refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon SRP056636
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type, 4L;C* and Isofagamine treated 4L;C* region specifics mouse brain Transcriptomes (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived brain transcriptome profiling (RNA-seq) in neuropathic region specific Gaucher mouse brain compared with WT and Isofagamine treated mice of the same age and background and secondly to identify the DEmiRNA associated with the DEmRNA before and after treatment This will give us some insights to see if miRNA is also involved in the the regulation of the expression of the genes involved in the disease process before and after treatment. Methods: 42-45 days old 4L;C*, wild-type (WT) and Isofagamine treated 4L;C* mouse brain were generated by deep sequencing, in triplicate, using IlluminaHiseq. The sequence reads that passed quality filters were analyzed at the gene level with two methods: Burrows–Wheeler Aligner (BWA) followed and TopHat followed by DESeq. qRT–PCR validation was performed using TaqMan and SYBR Green assays Overall design: Regional brain mRNA profiles of ~42 -days old wild type (WT) and 4L;C* an d Isofagamine treated mice were generated by deep sequencing, in triplicate, using IlluminaHi Seq.

Publication Title

Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact