refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 66 results
Sort by

Filters

Technology

Platform

accession-icon GSE37325
Expression profiles of Drosophila melanogaster males with DX mothers and X-chromosomes that were subjected to male-limited evolution
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Intralocus sexual conflict, where males and females have different fitness optima for the same trait, has been suggested to potentially be resolved by genomic imprinting, whereby expression in offspring is altered according to parent-of-origin. However, this idea has not yet been empirically tested. Here, we designed an experimental evolution protocol in Drosophila melanogaster which enabled us to look for imprinting effects on the X-chromosome. We enforced father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between control males, males with a control X-chromosome that had undergone one generation of father-son transmission (CDX), and males with an X-chromosome that had undergone many generations of father-son transmission (MLX). Although fitness differences were consistent with lowered fitness of males with a paternally inherited X-chromosome, expression differences suggested that this was due to deleterious maternal effects rather than imprinting. We conclude that imprinting is unlikely to resolve intralocus sexual conflict in Drosophila melanogaster.

Publication Title

Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE5850
Microarray analysis of NL and PCOS oocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production, arrested follicle development, and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. To examine whether the perturbations in follicle growth and the intrafollicular environment affects development of the mature PCOS oocyte, genes that are differentially expressed in PCOS compared to normal oocytes were defined using microarray analysis. This analysis detected approximately 8000 transcripts. Hierarchical clustering and principal component analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. 374 genes had a statistically-significant increase or decrease in mRNA abundance in PCOS oocytes. A subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis, suggesting that increased mRNAs for these proteins may negatively affect oocyte maturation and/or early embryonic development. Of the 374 differentially expressed genes, 68 contained putative androgen receptor, retinoic acid receptor, and/or peroxisome proliferating receptor gamma binding sites, including 9 of the genes involved in chromosome alignment and segregation. These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Furthermore, altered mRNA levels in the PCOS oocyte may contribute to defects in meiosis and/or mitosis which might impair oocyte competence for early development and therefore contribute to poor pregnancy outcome in PCOS.

Publication Title

Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10066
Transcriptional responses to lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5.

Publication Title

Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11679
Gene expression changes related to postnatal handling
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Postnatal handling in rodents leads to decreased anxiety-like behavior in adulthood. We used microarrays to look at gene expression differences in the CA1 region of the hippocampus in female mice subjected to postnatal handling compared to controls.

Publication Title

Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68610
Expression Data from Allogeneic Human Mesenchymal Stem Cells and Primary Cultures of Human Alveolar Epithelial Type II Cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe syndrome affecting more than 200,000 patients annually in the U.S. New studies are needed to understand the biological and clinical mechanisms that impair alveolar epithelial function. Also, innovative therapies are needed for the resolution of pulmonary edema in ARDS. We and other investigators have reported that bone marrow derived mesenchymal stem cells (MSCs) are effective in preclinical models of ALI due to their ability to secrete several paracrine factors that can regulate lung endothelial and epithelial permeability, including growth factors, anti-inflammatory cytokines, and antimicrobial peptides. So in this study we will test the therapeutic value of human MSCs in an in vitro model of acute lung injury induced by pro-inflammatory cytokines.

Publication Title

Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5926
Transcriptional response to weak organic acids in chemostat cultures of Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with various weak organic acids

Publication Title

Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE153195
Metabolomic and Transcriptomic Signatures of Prenatal Excessive Methionine in Mice Support Nature Rather than Nurture in the Pathogenesis and Therapy of Schizophrenia
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Abstract: The imbalance of prenatal micronutrients may perturb one-carbon (C1) metabolism and increase the risk for neuropsychiatric disorders. Prenatal excessive methionine (MET) produces in mice behavioral phenotypes reminiscent of human schizophrenia. Whether in-utero programming or early life caregiving mediate these effects is, however, unknown. Here, we show that the behavioral deficits of MET are independent of the early life mother-infant interaction. We also show that MET produces in early life profound changes in the brain C1 pathway components as well as glutamate transmission, mitochondrial function, and lipid metabolism. Bioinformatics analysis integrating metabolomics and transcriptomic data reveal dysregulations of glutamate transmission and lipid metabolism, and identify perturbed pathways of methylation and redox reactions. Our transcriptomics Linkage analysis of MET mice and schizophrenia subjects reveals master genes involved in inflammation and myelination. Finally, we identify potential metabolites as early biomarkers for neurodevelopmental defects and suggest new therapeutic targets for schizophrenia.

Publication Title

Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11680
Gene expression differences between high and low exploratory genetically identical mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genetically identical inbred mice exhibit substantial stable individual variability in exploratory behavior. We used microarrays to look at gene expression differences in the hippocampus in female mice separated by stable differences in exploratory behavior

Publication Title

Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21224
Transcriptional ontogeny of the developing liver
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We characterized gene expression changes in the developing mouse liver at gestational days (GD) 11.5, 12.5, 13.5, 14.5, 16.5, and 19.5 and in the neonate (postnatal day (PND) 7 and 30) using full-genome microarrays and compared these changes to that in the adult liver. The fetal liver, and to a lesser extent the neonatal liver, exhibited dramatic differences in gene expression compared to adults. Canonical pathway analysis of the fetal liver signature demonstrated increases in functions important in cell replication and DNA fidelity whereas most metabolic pathways of intermediary metabolism were suppressed. Comparison of the dataset to a number of previously published datasets revealed 1) a striking similarity between the fetal liver and that of the pancreas in both mice and humans, 2) a nucleated erythrocyte signature in the fetus and 3) suppression of most xenobiotic metabolism genes throughout development, except a number of transporters associated with expression in hematopoietic cells.

Publication Title

Transcriptional ontogeny of the developing liver.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9786
Transcriptional response to PFOA in wild-type and PPARalpha-null mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Toxicogenomic Dissection of the Perfluorooctanoic Acid (PFOA) Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARalpha and CAR

Publication Title

Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact