refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Technology

Platform

accession-icon GSE21806
Testicular lumicrine factors regulate ERK, STAT and NFKB pathways in the initial segment of the rat epididymis to prevent apoptosis
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The initial segment of the epididymis is vital for male fertility, therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from epididymis, a subset of cells within the initial segment undergo apoptosis. In this study, microarray analyses was used to examine early changes in the downstream signal transduction pathways following the loss of lumicrine factors, and we discovered the following cascade of events leading to loss of protection and eventual apoptosis. First, mRNA expression of several key components of ERK pathway decreased sharply after 6 hours of loss protection from testicular lumicrine factors. After 12 hours, the levels of mRNA expression of STAT and NF-B pathways components increased, mRNA expression of genes encoding cell cycle inhibitors increased. After 18 hours of loss protection from testicular lumicrine factors, apoptosis was observed in the initial segment. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating ERK pathway, repressing STAT and NF-B pathways, and preventing a cascade of reactions leading to apoptosis.

Publication Title

Testicular lumicrine factors regulate ERK, STAT, and NFKB pathways in the initial segment of the rat epididymis to prevent apoptosis.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE108607
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.

Publication Title

SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE72062
Whole genome microarray gene expression profiling of hippocampal genes from aged rats subjected to chronic unpredictable mild stress
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Psychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.

Publication Title

Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE2144
Gene induction by low pH in oesophageal cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Differential gene expression analysis of oesophageal cells stimulated with a low pH environment. Study designed to identify pathways involved in progression of gastro-oesophageal reflux disease through Barrett's oesophagus to adenocarcinoma. Identified many subsets of genes with involvement in pathogenesis.

Publication Title

Low pH induces co-ordinate regulation of gene expression in oesophageal cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58058
Insights into carcinogenic mechanisms of colorectal carcinoma lacking -catenin/TCF regulated transcription.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We sought to identify the carcinogenic mechanisms involved in RKO cell line with no evidence of activated -catenin/TCF regulated transcription, by comparison its gene expression profile to that of group of colorectal cancer cell lines selected to be mismatch repair

Publication Title

The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71475
Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene expression program and acute leukemia development
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (DNMT3A R882H) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A R882H directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1 and Hoxa gene cluster. DNMT3A R882H induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A R882H-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A R882H-induced gene expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.

Publication Title

Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE71437
Effect of DNMT3A R882H mutation or WT on gene expression in hematopoietic stem/progenitor cells with NRAS G12D co-transduction (Microarray)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (i.e., DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of stemness gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity.

Publication Title

Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE18239
Expression data from JAK1 wild-type and JAK1 mutation-positive T cell acute lymphoblastic leukemia blasts
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis

Publication Title

ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71439
Expression profiling of murine leukemia stem cell (LSC) lines established ex vivo by coexpression of R882H-mutated DNMT3A and NRAS-G12D post treatment with Dot1l inhibitor (Microarray)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of stemness gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity.

Publication Title

Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP195418
Transcriptome Signature of Cellular Senescence
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000, Illumina HiSeq 2500

Description

Abstract: Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage, and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage, and ß-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across 8 diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 47 RNAs consistently elevated and 26 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some long noncoding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy, and the development of strategies to target senescent cells therapeutically. Overall design: Transcriptomic analysis of various cell line models of senescence and their respective controls

Publication Title

Transcriptome signature of cellular senescence.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact