refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 127 results
Sort by

Filters

Technology

Platform

accession-icon GSE71306
Scl-Ab: Exploratory 26-Week Subcutaneous Toxicology Study in the Aged Ovariectomized Female Sprague Dawley Rat with an 18-week Recovery [vertebrae]
  • organism-icon Rattus norvegicus
  • sample-icon 294 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This study is designed to compare and contrast the temporal and spatial changes in bone formation rates and transcriptional profiles in cortical and cancellous bone cell populations enriched by laser capture microdissection (LCM) in ovariectomized rats administered Scl-Ab by subcutaneous injection for up to 26 consecutive weeks, followed by a recovery period of up to 18 weeks.

Publication Title

Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE36056
Transcriptional profiling of intestinal samples from Atg4b knock-out mice during chemical-induced colitis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase paralleling the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b-/- mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. Atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohns disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b-/- mice. Taken together, these results provide additional evidence on the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that Atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency

Publication Title

ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP061312
Cbx8 acts non-canonically with Wdr5 to promote mammary tumorigenesis [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Here we show that in MMTV-Myc cells (1) MS culture enriches for aggressive breast cancer cells compared to the bulk cells, (2) Cbx8 knockdown reduces Notch-network gene expression. Overall design: Gene expression of (1) bulk vs MS MMTV-Myc cells, (2) control vs Cbx8 knockdown MMTV-Myc cells

Publication Title

Cbx8 Acts Non-canonically with Wdr5 to Promote Mammary Tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070840
Capicua-dependent transcriptional changes in human cancer cell lines treated with trametinib
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We performed a genome-scale CRISPR screen in a KRAS-mutant pancreatic cancer cell line treated with the MEK inhibitor trametinib, and found that loss of the transcriptional repressor CIC confers resistance to MEK inhibition. We determined that CIC loss also confers resistance to MEK or BRAF inhibition in lung cancer, colorectal cancer, and melanoma cell lines with mutant RAS or BRAF. CIC is a transcriptional repressor that is phosphorylated and inhibited by the MAPK pathway. We hypothesized that inhibition of the MAPK pathway would lead to activation of CIC and repression of CIC target genes. Loss of CIC would therefore restore expression of these genes, conferring drug resistance. To identify the relevant CIC target genes that mediate trametinib resistace, we generated 4 Cas9-expressing cell lines from different lineages and with different RAS or RAF mutations, and generated control (gGFP) or CIC-knockout (gCIC) cell lines. We treated cells with DMSO or trametinib for 24 hours, and performed NRA-seq. We found that trametinib treatment reduces expression of at least one member of the PEA3 family of ETS transcription factors (ETV1, ETV4, and ETV5) in all cell lines assessed, and that loss of CIC results in maintained expression of these genes despite MEK inhibition. We further validated that ETV1, 4, and 5 expression was necessary for resistance mediated by CIC loss; and that ETV1, 4, or 5 expression was sufficient to confer trametinib resistance. Overall design: 4 Cas9-expressing human cancer cell lines (A549, CALU1, HCT116, PATU8902) were used to generate 3 isogenic cell lines with intact CIC (gGFP-1) or knocked out CIC (gCIC-1 or gCIC-2). Each of these 12 cell lines were treated with DMSO or trametinib for 24 hours (duplicates)

Publication Title

ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54969
Transcriptomic analysis reveals novel long non-coding RNAs critical for vertebrate development
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58588
Expression profiling of proliferative T-HEp3 and dormant D-HEp3 HNSCC cells in vivo
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The objective of this study was to obtain expression profiles of proliferative T-HEp3-GFP and dormant D-HEp3-GFP cells after one week in vivo. The second objective was find tumor cells quiescence associated genes in dormant D-HEp3 cells that are only quiescent when injected in vivo. In this case we compared cells one week growing vs. dormant for the indicated cells in chick embryo CAMs. After one week 5 embryos per cell line carrying the indicated cells were isolated, tumors collagenased as described below and sorted for GFP-high cells usig a MoFlo machine. The sorted cells > 5x10^4 were used to extract RNA and the pure RNA was used to perform expression profiling using the Affymetrix HG-u133plus2 arrays. Because of the low amount of D-HEp3 (dormant) cells recovered all tumor cells from the dormant nodules were pooled. The same was done for proliferative-sorted T-HEp3-GFP cells to allow comparisons. Arrays were performed in triplicate.

Publication Title

NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP037762
Transcriptomic analysis reveals novel long non-coding RNAs critical for vertebrate development [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression and chromatin modifications, with important functions in development and disease. Here we sought to identify and functionally characterize lncRNAs critical for vascular vertebrate development with significant conservation across species. Genome-wide transcriptomic analyses during human vascular lineage specification enabled the identification of three conserved novel lncRNAs: TERMINATOR, ALIEN and PUNISHER that are specifically expressed in pluripotent stem cells, mesoderm and endothelial cells, respectively. Gene expression profiling, alongside RNA immunoprecipitation coupled to mass spectrometry, revealed a wide range of new molecular networks and protein interactors related to post-transcriptional modifications for all three lncRNAs. Functional experiments in zebrafish and murine embryos, as well as differentiating human cells, confirmed a developmental-stage specific role for each lncRNA during vertebrate development. The identification and functional characterization of these three novel non-coding provide a comprehensive transcriptomic roadmap and shed new light on the molecular mechanisms underlying human vascular development. Overall design: Time course RNA-Seq analysis H1 ESCs differentiated into endothelial cells

Publication Title

Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54964
Transcriptomic analysis reveals novel long non-coding RNAs critical for vertebrate development [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression and chromatin modifications, with important functions in development and disease. Here we sought to identify and functionally characterize lncRNAs critical for vascular vertebrate development with significant conservation across species. Genome-wide transcriptomic analyses during human vascular lineage specification enabled the identification of three conserved novel lncRNAs: TERMINATOR, ALIEN and PUNISHER that are specifically expressed in pluripotent stem cells, mesoderm and endothelial cells, respectively. Gene expression profiling, alongside RNA immunoprecipitation coupled to mass spectrometry, revealed a wide range of new molecular networks and protein interactors related to post-transcriptional modifications for all three lncRNAs. Functional experiments in zebrafish and murine embryos, as well as differentiating human cells, confirmed a developmental-stage specific role for each lncRNA during vertebrate development. The identification and functional characterization of these three novel non-coding provide a comprehensive transcriptomic roadmap and shed new light on the molecular mechanisms underlying human vascular development.

Publication Title

Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048960
In vivo activation of a conserved microRNA program induces robust mammalian heart regeneration (RNA-Seq)
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Heart failure is a leading cause of mortality and morbidity in the developed world, partly because mammals lack the ability to regenerate heart tissue. Whether this is due to evolutionary loss of regenerative mechanisms present in other organisms or to an inability to activate such mechanisms is currently unclear. Here, we decipher mechanisms underlying heart regeneration in adult zebrafish and show that the molecular regulators of this response are conserved in mammals. We identified miR-99/100 and Let-7a/c, and their protein targets smarca5 and fntb, as critical regulators of cardiomyocyte dedifferentiation and heart regeneration in zebrafish. Although human and murine adult cardiomyocytes fail to elicit an endogenous regenerative response following myocardial infarction, we show that in vivo manipulation of this molecular machinery in mice results in cardiomyocyte dedifferentiation and improved heart functionality after injury. These data provide a proof-of-concept for identifying and activating conserved molecular programs to regenerate the damaged heart. Overall design: RNA-Seq expression profiles of rat cardiomyocytes after knockdown of miR-99/100 and Let-7 miRNAs

Publication Title

In vivo activation of a conserved microRNA program induces mammalian heart regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67286
Establishment of human iPSC-based models for the study and targeting of glioma initiating cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact