refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 198 results
Sort by

Filters

Technology

Platform

accession-icon SRP017604
GSE27623: Target RNA repertoire of mouse Mili and Miwi proteins reveals piRNA biogenesis and Miwi function in spermiogenesis
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

No description.

Publication Title

Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE67144
Transcriptomic response of the Arabidopsis provascular tissue to Brassinosteroids
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

These data represents a microgenomic approach to dissect the response of the plant steroid hormone, brassinosteroid, in the provascular tissue of the arabidopsis thaliana primary roots. We used two different provascular markers, wooden leg (WOL) and corona (ATHB15) to profile the provascular response to BRs. We used a timecourse analysis with 4 different timepoint; 0.5, 1, 2 and 4 hours treated with BRs in the WOL domain. Additional trasncriptomic responses of the ATHB15 domain were analyzed after 2 hours BRs treatment.

Publication Title

Regulation of plant stem cell quiescence by a brassinosteroid signaling module.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE25980
In vitro and in vivo analysis of hypoxic gene expression in rat gliomas
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection

Publication Title

In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE41106
Expression data after irradiating mMSCs
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41083
Expression data after irradiating mMSCs for 2 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41084
Expression data after irradiating mMSCs for 12 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41085
Expression data after irradiating mMSCs for 2 hours with single frequency terahertz laser source
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23888
Mammalian stem cells respond to terahertz radiation with changes in gene expression
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied teraherz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG). Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.

Publication Title

Mammalian stem cells reprogramming in response to terahertz radiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE15472
Induced Pluripotent Stem Cells from the Pig Somatic Cells
  • organism-icon Sus scrofa
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We have derived induced porcine pluripotent stem cells (iPPSCs) from porcine fetal fibroblasts by lentiviral transduction of four human (h) reprogramming genes, hOCT4, hSOX2, hKLF4 and hc-MYC , the same combination of factors used for deriving induced pluripotent stem cell (iPSC) lines in both mouse and human. The obtained iPPSC lines resemble human embryonic stem cells (ESC) in their gross morphology and dependence on FGF2, on the other hand, the iPPSCs share characteristics like growth rate and cell surface markers with mESC . Additionally, the iPPSCs express pluripotency- associated genes similar to mouse and human iPSCs as well as ESC, along with the pig epiblast cells. Some of the iPPSC lines retained a stable karyotype and phenotype even in culture for a prolonged period of time (passage 39). The iPPSCs can be induced to differentiate along lineages representative of the three embryonic germ layers both in vitro and in vivo demonstrating the pluripotency of these cells.

Publication Title

Derivation of induced pluripotent stem cells from pig somatic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26369
LIF-Dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos
  • organism-icon Sus scrofa
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The pig is important for agriculture and as an animal model in human and veterinary medicine, yet, despite over 20 years of effort, it has proved a difficult species from which to generate pluripotent stem cells analogous to those derived from mouse embryos. Here we report the production of LIF-dependent, so called nave type, pluripotent stem cells from the inner cell mass of porcine blastocysts by up-regulating expression of KLF4 and POU5F1. These cells resemble mouse ES cells and are distinct from the FGF2-dependent, induced pluripotent cell type derived from porcine somatic cells.

Publication Title

Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact