refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE21001
Infection of MK2 cells with monkeypox virus
  • organism-icon Macaca mulatta
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication.

Publication Title

Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP102516
Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor [human RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung. Overall design: Examination of open chromatin in 2 subtypes of alveolar epithelial cell populations

Publication Title

Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon GSE70052
caArray_green-00155: Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Comparison the gene expression profiles of mouse mammary tumors derived from MMTV-PyMT transgenic in five different strains including FVB/NJ, I/LnJ F1, NZB/B1NJ F1, MOLF/Ei F1 and LP/J F1 and identification of signatures of tumor virulence.

Publication Title

Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE85756
BPTF Depletion Enhances NK Cell Mediated Antitumor Immunity
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In mouse models, the bromodomain PHD finger transcription factor (BPTF) chromatin remodeling subunit in tumor cells suppresses natural killer (NK) cell antitumor activity.

Publication Title

BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE71864
Increased antigenicity of NURF-depleted tumors enhances CD8 T cell-mediated antitumor immunity
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Depleting the NURF chromatin remodeling complex results in enhanced antitumor immunity using mouse tumor models syngenic to two strain backgrounds.

Publication Title

BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15762
Comparison of gene expression between wild type (N2) and hlh-30(tm1978) mutant worms
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

The hlh-30 gene encodes a C. elegans basic-helix-loop-helix (bHLH) transcription factor; We compared RNA from wild type worms and worms mutant for the hlh-30 gene to identify putative target genes of the HLH-30 transcription factor.

Publication Title

A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30678
Profiling of Jurkat T cells activated with CD3, CD28 and PMA and multiple kinase inhibitors at 1 and 8 hours
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE30674
Profiling of Jurkat T cells activated with CD3, CD28 and PMA and multiple kinase inhibitors
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T lymphocytes are orchestrators of adaptive immunity. Nave T cells may differentiate into the Th1, Th2, Th17 or iTreg phenotype, depending on environmental co-stimulatory signals. In order to identify the genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli an pathway inhibitors

Publication Title

Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE30676
Profiling of Jurkat T cells activated with CD3, CD28 and PMA at 1 and 8 hours
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T lymphocytes are orchestrators of adaptive immunity. Nave T cells may differentiate into the Th1, Th2, Th17 or iTreg phenotype, depending on environmental co-stimulatory signals. In order to identify the genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli an pathway inhibitors

Publication Title

Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE6134
Offsprings of crosses between hypercholesterolemic and normocholesterolemic parents LUMC-HKG-ApoE-Atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Enhanced prenatal fatty streak formation in human fetuses has been associated with maternal hypercholesterolemia. However, the possible roles of maternal genetic background and in utero environment on development of atherosclerosis in adult life have not been unraveled. We generated genetically identical heterozygous apoE-deficient mice offspring with a different maternal background to study the intrauterine effect of maternal genotype and associated hypercholesterolemia on the developing vascular system. As read out for increased atherosclerosis development in adult life, a constrictive collar was placed around the carotid artery to induce lesion formation. A significant increase in endothelial cell activation and damage was detected in the carotid arteries of heterozygous apoE-deficient fetuses with apoE-deficient mothers compared with offspring from wild type mothers, but no fatty streak formation was observed. Postnatally, all carotid arteries revealed normal morphology. In adult offspring with maternal apoE-deficiency, the constrictive collar resulted in severe lesion (9/10) development compared with no to only minor lesions (2/10) in offspring of wild type mothers. Microarray analysis showed no effect of maternal apoE-deficiency on gene expression in adult offspring. We conclude that maternal apoE-deficiency not only affects fetal arteries, but also increases the susceptibility for development of collar-induced atherosclerosis in adult life.

Publication Title

Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact