refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 104 results
Sort by

Filters

Technology

Platform

accession-icon GSE74622
BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system, and is the most common solid tumor of infancy. NBs are very heterogeneous, with a clinical course ranging from spontaneous regression to resistance to all current forms of treatment. High-risk patients need intense chemotherapy, and only 30-40% will be cured. Relapsed or metastatic tumors acquire multi-drug resistance, raising the need for alternative treatments. Owing to the diverse mechanisms that are responsible of NB chemoresistance, we aimed to target epigenetic factors that control multiple pathways to bypass therapy resistance. We found that the SWI/SNF-related, matrix-associated, actin- dependent regulator of chromatin, subfamily a, member 4 (SMARCA4/BRG1) was consistently upregulated in advanced stages of NB, with high BRG1 levels being indicative of poor outcome. Loss-of-function experiments in vitro and in vivo showed that BRG1 is essential for the proliferation of NB cells. Furthermore, whole genome transcriptome analysis revealed that BRG1 controls the expression of key elements of oncogenic pathways such as PI3K/AKT and BCL2, which offers a promising new combination therapy for high-risk NB

Publication Title

BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51869
Expression data from mesenchymal stromal cells isolated from the umbilical cord tissue (UCX) and cultivated in ATMP-compatible media
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Standardization of MSC manufacturing is urgently needed to facilitate comparison of clinical trial results. Here, we compare gene expression of MSC generated by the adaptation of a proprietary method for isolation and cultivation of a specific umbilical cord tissue-derived population of Mesenchymal Stromal Cells (MSCs)

Publication Title

Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42089
The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell cycle progression in mouse bladder cancer cells in vitro and in vivo
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth.

Publication Title

The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell-cycle progression in malignant bladder cancer cells in vitro and in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72151
Transcriptome analysis of Largemyd and Dmdmdx/Largemyd muscles in comparison to Dmdmdx: what make them different?
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of hindlimb muscles from dystrophic mice

Publication Title

Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different?

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP162288
Genetic control of cellular morphogenesis in Müller glia
  • organism-icon Danio rerio
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

How the various cell-types of the body achieve their specific shapes is fundamentally unknown. Here, we explore this issue by identifying genes involved in the elaboration of the complex, yet conserved, cellular morphology of Müller glial (MG) cells in the retina. Using genomic based strategies in zebrafish, we found more than 40 candidate genes involved in specific aspects of MG morphogenesis. The successive steps of cell morphogenesis correlate with the timing of the expression of cohorts of inter-related genes that have roles in generating the particular anatomical features of these cells, suggesting that a sequence of genetic regulomes govern stepwise cellular morphogenesis in this system. Overall design: 12 samples with three replicates each are provided. GFAP:GFP positive and negative cells were FAC sorted from wild type animals from each developmental stage

Publication Title

Genetic control of cellular morphogenesis in Müller glia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP021541
Promoter directionality is controlled by U1 snRNP and polyadenylation signals
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcription of the mammalian genome is pervasive, but productive transcription outside of protein-coding genes is limited by unknown mechanisms. In particular, although RNA polymerase II (RNAPII) initiates divergently from most active gene promoters, productive elongation occurs primarily in the sense-coding direction. Here we show in mouse embryonic stem cells that asymmetric sequence determinants flanking gene transcription start sites control promoter directionality by regulating promoter-proximal cleavage and polyadenylation. We find that upstream antisense RNAs are cleaved and polyadenylated at poly(A) sites (PASs) shortly after initiation. De novo motif analysis shows PAS signals and U1 small nuclear ribonucleoprotein (snRNP) recognition sites to be the most depleted and enriched sequences, respectively, in the sense direction relative to the upstream antisense direction. These U1 snRNP sites and PAS sites are progressively gained and lost, respectively, at the 5'' end of coding genes during vertebrate evolution. Functional disruption of U1 snRNP activity results in a dramatic increase in promoter-proximal cleavage events in the sense direction with slight increases in the antisense direction. These data suggest that a U1-PAS axis characterized by low U1 snRNP recognition and a high density of PASs in the upstream antisense region reinforces promoter directionality by promoting early termination in upstream antisense regions, whereas proximal sense PAS signals are suppressed by U1 snRNP. We propose that the U1-PAS axis limits pervasive transcription throughout the genome. Overall design: 3'' end sequencing of poly (A) + RNAs in mouse ES cells with and without U1 snRNP inhibition using antisense morpholino oligonucleotides (AMO). Each with two biological replicates.

Publication Title

Promoter directionality is controlled by U1 snRNP and polyadenylation signals.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE27541
Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The pattern of gene transcription in Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. To investigate the requirement of PKA for glucose control of gene expression, we have analyzed global transcription in strains devoid of PKA activity. In S. cerevisiae three genes, TPK1, TPK2, TPK3, encode catalytic subunits of PKA and the triple mutant tpk1 tpk2 tpk3 is unviable. We have worked, therefore, with two strains, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4, that bear suppressor mutations,. We have identified different classes of genes that can be induced, or repressed, by glucose in the absence of PKA. Among these genes, some are also controlled by a redundant signalling pathway involving PKA activation, while others do not respond to an increase in cAMP concentration. On the other hand, among genes which do not respond to glucose in the absence of PKA, some show a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways.

Publication Title

Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE16648
Networking of differentially expressed genes in human cancer cell lines resistant to methotrexate
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Networking of differentially expressed genes in human cancer cells resistant to methotrexate.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15498
Genome-wide Profiling of Gene Expression in a New Rat Model of Cholangiocarcinoma Progression Mimicking the Human Cancer
  • organism-icon Rattus norvegicus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Validation of preclinical models of intrahepatic cholangiocarcinoma progression that reliably recapitulate altered molecular features of the human disease would provide an important resource for suggesting and testing of novel target-based therapies against this devastating cancer. In this study, comprehensive gene expression profiling in a novel orthotopic rat model of intrahepatic cholangiocarcinoma progression was carried out in an effort to identify potential therapeutic targets relevant to the progressive human cancer.

Publication Title

Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16085
Networking of differentially expressed genes in human K562 erythtoblastic leukemia cells resistant to methotrexate
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A summary of the work associated to these microarrays is the following:

Publication Title

Networking of differentially expressed genes in human cancer cells resistant to methotrexate.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact