refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 78 results
Sort by

Filters

Technology

Platform

accession-icon SRP199744
Tissue resident macrophages promote renal cystic disease
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We show that resident macrophages accumulate in cilia mutant mice prior to cyst formation and that inhibition of resident macrophage accumulation reduces cystic kidney disease. Overall design: We analyzed gene expression of R2a (CD11c+) and R2b (CD11c-) resident macrophages isolated from adult, wild type mice. In these experiments, we isolated RNA from 6-8 mice and pooled the RNA together prior to sequencing.

Publication Title

Tissue-Resident Macrophages Promote Renal Cystic Disease.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE149916
Expression data from cochlea isolated from Meis2 mutant and wild-type mice at E15
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this study consists in detecting genes regulated by Meis2 in the murine cochlea

Publication Title

Meis2 Is Required for Inner Ear Formation and Proper Morphogenesis of the Cochlea.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37430
Gene regulation following MIF / IL-8 stimulation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+ B lymphocytes in peripheral blood, lymphoid organs and BM. The main feature of the disease is accumulation of the malignant cells due to decreased apoptosis. CD84 belongs to the Signaling Lymphocyte Activating Molecule (SLAM) family of immunoreceptors, and has an unknown function in CLL cells. Here, we show that the expression of CD84 is significantly elevated from the early stages of the disease, and is regulated by macrophage migration inhibitory factor (MIF) and its receptor, CD74. Activation of cell surface CD84 initiates a signaling cascade that enhances CLL cell survival. Both immune-mediated neutralization or blockade of CD84 induce cell death in vitro and in vivo. In addition, analysis of samples derived from an on-going clinical trial, in which human subjects were treated with humanized anti-CD74 milatuzumab shows a decrease in CD84 mRNA levels milatuzumab-treated cells. This downregulation was correlated with reduction of Bcl-2 and Mcl-1 message. Thus, our data show that overexpression of CD84 in CLL is an important survival mechanism that appears to be an early event in the pathogenesis of the disease. These findings suggest novel therapeutic strategies based on the blockade of this CD84-dependent survival pathway.

Publication Title

CD84 is a survival receptor for CLL cells.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE7432
Ethylene and auxin interactions in the roots of Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Understanding how developmental and environmental signals are integrated to produce specific responses is one of the main challenges of modern biology. Hormones and, most importantly, interactions between different hormones serve as crucial regulators of plant growth and development, playing central roles in the coordination of internal developmental processes with the environment. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones, ethylene and auxin.

Publication Title

Multilevel interactions between ethylene and auxin in Arabidopsis roots.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14496
A combinatorial Interplay Among the ACC Synthase Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

ACC Synthase (ACS) is the key regulatory enzyme in the ethylene biosynthesis in plants. It catalyzes the conversion of s-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. Arabidopsis has nine ACS genes. The goal of the project is to inactivate each gene by insertional mutagenesis and amiRNA technology and eventually construct a null ACS mutant. We have been recently able to achieve this goal. Furthermore, we wanted to know how inactivation of individual ACS genes affects global gene expression.

Publication Title

A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65927
Early postnatal expression data from mouse skeletal muscle stem cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Satellite cells are the primary source of stem cells for skeletal muscle growth and regeneration. Since adult stem cell maintenance involves a fine balance between intrinsic and extrinsic mechanisms, we performed genome-wide chronological expression profiling to identify the transcriptomic changes involved during early postnatal growth till acquisition of satellite cell quiescence.

Publication Title

Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-430
Transcription profiling of mouse otic vesicle and surrounding mesenchyme and neighboring hindbrain sample from wild type and mouse mutants for FGF3, FGF10 and FGF3/FGF10 double mutants at embryonic day E10
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Wild-type and mouse mutants for FGF3, FGF10 and FGF3/FGF10 double mutants at embryonic day E10 were analysed by microarrays for downregulated genes. A tissue sample corresponding to an area containing the otic vesicle and surrounding mesenchyme and neighboring hindbrain were isolated from E10 embryos (See Figure 3A of manuscript). Five samples were pooled for RNA preparation. Samples were isolated from wild-type, FGF3, FGF10 and FGF3/FGF10 double mutants. Two RNA samples for each genotype were generated (corresponding to 8 tissue samples). RNA was labeled and hybridized with Affymetrix U74A V2 arrays.

Publication Title

FGF signalling controls expression of vomeronasal receptors during embryogenesis.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE42008
Expression data from NcGFP ki/+, NcGFP ki/ki and wt (W4) ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We generated a gene replacement allele of the E-cadherin locus that express an N-cadherin-GFP fusion in ES cells. Expression profiles of homozygous and heterozygous knock-in ES cells were analyzed in comparison to wt ES cells.

Publication Title

Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP154527
Next Generation Sequencing Facilitates Quantitative Analysis of mock and tobacco ratle virus (TRV) Arabidopsis inflorescences Transcriptome [RNA-Seq]
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study is to compare the transcriptome profilling (RNA-seq) of inflorescences infected with tobacco ratle virus (TRV) to mock inoculated inflorescences (negative controls), in Arabidopsis plants Methods: Inflorescences of systemically TRV infected or mock-inoculated plants were collected from more than 40 independent Arabidopsis plants, at 14 days post-inoculation (dpi). TRV and mock mRNA profiles were generated by deep sequencing by Illumina HiSeq 2000. The sequence reads that passed quality filters (SOAPnuke) were analysed by Burrows-Wheeler (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. Genes and isoforms were quantified by RSEM sofware package. qRT-PCR validation was performed using TaqMan and SYBR Green assays. Results: Here we report a significant repression of DNA methylation genes in inflorescences of Arabidopsis plants infected with Tobacco rattle virus (TRV) that coincides with dynamic changes in methylation at the whole genome level. Arabidopsis mutants deficient in DNA methylation were more resistant to this virus in early colonized tissues but more susceptible at later time points of infection, indicating that DNA methylation was critical to control both proliferation and antiviral defense. We found that TRV interference with DNA methylation leads to changes in the methylation and trancriptional status of transposable elements (TEs), including TEs located in the promoter of disease resistance genes that were significantly repressed in plants exposed to TRV. Activation of both TEs and their nearby disease resistance genes was altered in a range of hypo- and hyper-methylated Arabidopsis mutants, indicating that perturbations in DNA methylation contributes to modulate their expression in infected plants. Conclussion: Our study showed that TRV interferes with DNA methylation to alter the transcriptional silencing of TEs, which in turn compromises the expression of neighboring disease resistance genes. Overall design: TRV and mock mRNA profiles were generated from Arabidopsis inflorescences by deep sequencing with Illumina HiSeq 2000.

Publication Title

Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP128608
Next-generation sequencing of human dermal fibroblasts transdifferentiated towards the otic lineage
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the RNAseq analysis of human dermal fibroblasts which have been treated by protocols to stimulate their differentiation towards the otic lineage. This was achieved by transfection with different transcription factors with the aim to induce an initial reprogramming of the cells and was followed by growth factor treatments known to promote otic differentiation. The results show that a partial differentiation towards the otic lineage is achieved by these protocols. Overall design: RNAseq profiles were obtained from human dermal fibroblasts with two different protocols. Prior to treatment with growth factors stimulating differentiation, the samples were either transfected with the transcription factors OCT4 or a combination of ATOH1, POU4F3 and GFI1.

Publication Title

Transcription factor induced conversion of human fibroblasts towards the hair cell lineage.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact