refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 167 results
Sort by

Filters

Technology

Platform

accession-icon GSE98424
Expression data from Hm mutant
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse Hammer toe (Hm) shows syndactyly. To reveal the molecular mechanisms of Hm phenotype, we performed microarray analysis to search differencially expressed genes in Hm limb.

Publication Title

Enhancer adoption caused by genomic insertion elicits interdigital <i>Shh</i> expression and syndactyly in mouse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20232
Cytokinin treatment on roots of seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

According to the well-documented scenario with regard to the cytokinin-mediated phosphorelay signal transduction in Arabidopsis thaliana, certain members of the type-B ARR family are crucially implicated in the regulatory networks that are primarily propagated by the cytokinin-receptors (AHKs) in response to cytokinin. Nevertheless, clarification of the biological impact of these type-B ARR transcription factors is at a very early stage. Here we focused on a pair of highly homologous ARR10 and ARR12 genes by constructing an arr10 and arr12 double-null mutant. The mutant alleles used in this study were arr10-5 and arr12-1. arr10-5 is the SALK_098604 T-DNA insertion line, whose mutation was determined to be located in the fifth exon of the ARR10 coding sequence. arr12-1 is the SALK_054752 T-DNA insertion line, whose mutation was determined to be located in the third exon of the ARR12 coding sequence. The resulting mutant showed remarkable phenotypes with special reference to the cytokinin-action in roots (e.g., inhibition of root elongation, green callus formation from explants). Furthermore, we demonstrated that ARR10 and ARR12 are involved in the AHK-dependent signaling pathway that modulates the differentiation of root-vascular tissues (i.e., protoxylem-specification), suggesting that ARR10 and ARR12 are the prominent players that act redundantly in the AHK-dependent cytokinin signaling in roots. Keeping this in mind, we then collected the root-specific and combinatorial DNA microarray datasets with regard to the cytokinin-responsible genes by employing both the wild-type and arr10 arr12 double-mutant plants. In this study, wild-type and the arr10 arr12 mutant grown vertically on MS agar plates for 2 weeks were treated with 20 microM of the cytokinin trans-zeatin (TZ) or 0.02% DMSO (solvent for trans-zeatin solution) for 1h. These treated plant samples were divided into three portions, from which RNA samples were prepared separately from roots of seedlings with use of RNeasy Plant Mini Kit (Qiagen, Valencia, CA, U.S.A.). The quality of RNAs prepared was analyzed by Bioanalyzer 2100 (Agilent Technologies). These RNA samples were processed as recommended by the Affymetrix instruction (Affymetrix GeneChip Expression Analysis Technical Manual, Affymetrix). These datasets will provide us with bases for understanding the early response to cytokinin on roots of seedlings in Arabidopsis thaliana.

Publication Title

Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE6832
Cytokinin treatment on aerial parts of seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In Arabidopsis thaliana, the immediate early response of plants to cytokinin is formulated as the multistep AHK-AHP-ARR phosphorelay signaling circuitry, which is initiated by the cytokinin-receptor histidine protein kinases. In the hope of finding components (or genes) that function downstream of the cytokinin-mediated His-Asp phosphorelay signaling circuitry, we carried out genome-wide microarray analyses. To this end, we focused on a pair of highly homologous ARR10 and ARR12 genes by constructing an arr10 arr12 double null mutant. The mutant alleles used in this study were arr10-5 and arr12-1. arr10-5 is the SALK_098604 T-DNA insertion line, whose mutation was determined to be located in the fifth exon of the ARR10 coding sequence. Arr12-1 is the SALK_054752 T-DNA insertion line, whose mutation was determined to be located in the third exon of the ARR12 coding sequence. The resulting mutant exhibits a characteristic phenotype with regard to the cytokinin-mediated His-Asp phosphorelay. Here we, therefore, compared response to cytokinin in wild type with that in arr10 arr12 double mutant. In this study, wild type and the arr10 arr12 double mutant grown vertically on MS agar plates for 2 weeks were treated with 20uM t-zeatin or 0.02% DMSO (solvent for t-zetion solution) for 1h. These treated plant samples were divided into three portions, from which RNA samples were prepared separately from aerial parts of seedlings with use of RNeasy Plant Mini Kit (Qiagen, Valencia, CA, U.S.A.). The Quality of RNAs prepared was analyzed by Bioanalyzer 2100 (Agilent Technologies). These RNA samples were processed as recommended by the Affymetrix instruction (Affymetrix GeneChip Expression Analysis Technical Manual, Affymetrix). These dataset will provide us with bases for understanding the early response to cytokinin on aerial parts of seedlings in Arabidopsis thaliana.

Publication Title

Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1294
Expression profile of genes in normal and Down syndrome mouse brains
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74B Version 2 Array (mgu74bv2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1281
Expression profile of genes in normal and Down syndrome mouse brains MGU74A
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1282
Expression profile of genes in normal and Down syndrome mouse brains MGU74B
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74B Version 2 Array (mgu74bv2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043376
Genome-wide transcriptome analyses by the RNA-seq method
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed the whole transcriptome analysis in Zscan4 positive ES cells (Em+) and Zscan4 negative ES cells (Em-) by using FACS-sorted MC1-ZE7 ES cells. Overall design: Whole RNA-seq in Zscan4 positive and negative cells

Publication Title

Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053043
Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations of the survival of motor neuron 1 (SMN1) gene. In the pathogenesis of SMA, pathological changes of the neuromuscular junction (NMJ) precede the motor neuronal loss. Therefore, it is critical to evaluate the NMJ formed by SMA patients’ motor neurons (MNs), and to identify drugs that can restore the normal condition. We generated NMJ-like structures using motor neurons (MNs) derived from SMA patient-specific induced pluripotent stem cells (iPSCs), and found that the clustering of the acetylcholine receptor (AChR) is significantly impaired. Valproic acid and antisense oligonucleotide treatment ameliorated the AChR clustering defects, leading to an increase in the level of full-length SMN transcripts. Thus, the current in vitro model of AChR clustering using SMA patient-derived iPSCs is useful to dissect the pathophysiological mechanisms underlying the development of SMA, and to evaluate the efficacy of new therapeutic approaches. Overall design: to evaluate the effects of VPA on the expression profiles of the MNs

Publication Title

Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125944
IMP3 regulated gene expression in breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

IMP3 (IGF2-mRNA binding protein 3) is a member of a family of IGF2-mRNA binding proteins that function in RNA stabilization, trafficking and localization. It exhibits the properties of an oncofetal protein and its expression correlates with the aggressive behavior of many tumors. In breast cancer, IMP3 is associated with the highly aggressive triple-negative subtype (TNBC) The challenge is to identify specific proteins and functions that are regulated by IMP3. As an approach to this problem, we compared the mRNA expression profile of SUM-1315 cells, a TNBC cell line, to the same cells that had been depleted of IMP3. Overall design: SUM-1315 breast cancer cells were were infected with lentivirus for control shRNA and two different IMP3 shRNAs and processed for RNA-sequencing

Publication Title

IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49053
Differentiation defective phenotypes revealed by large scale analyses of human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact