refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 84 results
Sort by

Filters

Technology

Platform

accession-icon GSE10565
Identification of targets of transcription factor Trp63: primary keratinocytes
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10562
Induction of ERDNp63a via Tamoxifen in primary keratinocytes
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10563
Primary keratinocytes treated with Tamoxifen
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10564
Silencing of p63 (trp63) in primary keratinocytes via siRNA oligo transfection.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055108
Global Gene Expression analysis of CUTLL1 cell lines after treatment with Perhexiline
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We identify perhexiline, a small molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1 induced leukemias in vitro and in vivo. Overall design: RNA-Seq from CUTLL1 cell lines treated with Perhexiline or vehicle for 3 days

Publication Title

Therapeutic targeting of HES1 transcriptional programs in T-ALL.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18866
Expression data from doxycylin-inducible miR-15a/16-1 and empty vector (EV) expression in a 13q14-\- cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Reexpression of microRNAs miR-15a/16-1 in a cell line deficient for these miRs (homozygous deletion of chromosomal region 13q14) results in the downregulation of certain mRNAs.

Publication Title

The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE33562
Preclinical analysis of the gamma secretase inhibitor PF-030840214 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of gamma-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Molecular characterization of the response to PF-03084014 plus glucocorticoids through gene expression profiling revealed transcriptional upregulation of the glucocorticoid receptor as the mechanism mediating the enhanced glucocorticoid response. Moreover, treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment was highly effective at reversing PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results suggest that combination of PF-03084014 treatment with glucocorticoids may be well-tolerated and highly active for the treatment of glucorticoid-resistant T-ALL.

Publication Title

Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE77532
Genome-wide analysis of gene expression during adipogenesis in human adipose-derived mesenchymal stromal cells reveals novel patterns of gene expression during adipocyte differentiation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To better understand the scale of gene expression changes that occur during the formation of mature adipocytes from preadipocytes, we compared and characterised the transcriptome profile of mesenchymal stromal cells derived from human adipose tissue, otherwise known as adipose-derived stromal cells (ASCs), undergoing adipocyte differentiation on day 1, 7, 14 and 21 (representing the early to late stage process of adipogenesis). Microarray technique was systematically employed to study gene expression in adipose-derived stromal cells during adipogenic differentiation over a 21 day period to identify genes that are important in driving adipogenesis in humans.

Publication Title

Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP077667
Mouse model of RHOA G17V mutation in Peripheral T-Cell Lymphoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid tumor derived from malignant transformation of T follicular helper (Tfh) cells. Genetically, AITL is characterized by loss of function mutations in the Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val, G17V) in the RHOA small GTPase gene Moreover, RHOA G17V expression in Tet2 deficient hematopoietic progenitors resulted in the specific development of lymphoid tumors resembling human AITL. Notably, inhibition of ICOS signaling impaired the growth of RHOA G17V-induced mouse lymphomas in vivo, thus providing a potential new rational approach for the treatment of AITL. Overall design: We analyzed mRNA expression profiles of primary tumor cells expressing Rhoa G17V or Rhoa wild type.

Publication Title

RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE71090
Expression data from isogenic Pten WT or KO mouse T-ALLs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact