refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 38 results
Sort by

Filters

Technology

Platform

accession-icon GSE107130
Microbiome influences prenatal and adult microglia in a sex-specific
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE107129
Transcriptomic analysis of murine microglia from embryonic development to adulthood
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Microarray analysis of murine microglia from different stages of development was performed. Results showed that different phases of microglia development had different group of genes up-regulated for specific functions.

Publication Title

Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP126509
Genome wide study of microglia in Specific-pathogen-free (SPF) and Germ-free (GF) mice at different stages in males and females (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNAseq was performed on microglia from male and female, SPF or GF mice to elucidate the genetic differences implicated by microbiota and gender. DEGs between the various groups gave some ideas on what different pathways or functions might be affected due to the different factors. Overall design: Microglia from SPF and GF mice from embryonic and adult stages of both gender were sorted for sequencing. DEGs were obtained to observe if any signicant genes were affected. Pathway analysis was performed with the set of DEGs.

Publication Title

Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP045639
Aneuploidy-induced cellular stresses limit autophagic degradation.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Determining how aneuploidy affects cells is thus critical to understanding tumorigenesis. Here we show that aneuploidy interferes with the degradation of autophagosomes within lysosomes. Mis-folded proteins that accumulate in aneuploid cells due to aneuploidy-induced proteomic changes overwhelm the lysosome with cargo, leading to the observed lysosomal degradation defects. Importantly, aneuploid cells respond to lysosomal saturation. They activate a lysosomal stress pathway that specifically increases the expression of genes needed for autophagy-mediated protein degradation. Our results reveal lysosomal saturation as a universal feature of the aneuploid state that must be overcome during tumorigenesis. Overall design: RPE-1 cells either untreated or treated with one of Reversine, Bafilomycin A1 or MG132, each condition was done in triplicate. D14-*_Control: untreated control D14-*_Rev: cells treated with 0.5uM Reversine for 24hrs and harvested 48hrs later D14-*_Baf: cells treated with 0.1uM BafA1 for 6hrs D14-*_Mg: cells treated with 1uM MG132 for 24 hrs

Publication Title

Aneuploidy-induced cellular stresses limit autophagic degradation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13520
Expression profiles of (40,XX) and (39,XO) females
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

Gobal expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice with the aim of identifying which genes are expressed from both X chromosomes as well as those genes deregulated in X chromosome monosomy.

Publication Title

Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE76812
Common pathways involved in adipose tissue inflammation and atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Adipose tissue inflammation and atherosclerosis are the main mechanisms behind type 2 diabetes and cardiovascular disease respectively, the major risks associated with the metabolic syndrome. Studies considering more than single factors behind the complexity of the metabolic syndrome are valuable to achieve a better and wider understanding of the metabolic syndrome. In this study common dysregulated pathways between adipose tissue inflammation and atherosclerosis were identified using two different bioinformatic tools to perform pathway analysis. First, we run a gene set enrichment analysis utilizing with data from two microarray experiments done with gonadal white adipose tissue and atherosclerotic aorta. Once the common dysregulated pathways between both tissues were identify, the inflammatory response and the oxidative phosphorylation pathways from the Hallmark geneset were selected to conduct a deeper checkup at the single gene level of these pathways. Second, we carried out a pathway analysis validation with the Panther software combining the microarray data with a published type 2 diabetes mellitus metanalysis and cardiovascular disease metanalysis which included human data. In conclusion, this study provides worthwhile data pointing out and describing several dysregulated and common pathways in adipose tissue inflammation and atherosclerotic aorta with a potential implication in the pathogenesis of type 2 diabetes and atherosclerosis.

Publication Title

Common dysregulated pathways in obese adipose tissue and atherosclerosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12501
Gene Expression in MEFs Trisomic for Chromosomes 1, 13, 16 and 19
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Aneuploidy, an incorrect chromosome number, is the leading cause of miscarriages and mental retardation in humans and is a hallmark of cancer. We examined the effects of aneuploidy on primary mouse cells by generating a series of cell lines that carry an extra copy of one of four mouse chromosomes. In all four trisomic lines proliferation was impaired and metabolic properties were altered. Immortalization, the acquisition of the ability to proliferate indefinitely, was also affected by the presence of an additional chromosome, with some chromosomes inhibiting immortalization while others accelerating the process. Our data indicate that aneuploidy decreases not only organismal but also cellular fitness and elicits traits that are shared between different aneuploid cells.

Publication Title

Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20986
Comparative Gene Expression Profiling of HUVEC and Ocular Vascular Endothelial Cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To compare the gene expression profiles of unpassaged, proliferating HUVEC and human iris, retinal and choroidal microvascular endothelial cells.

Publication Title

Comparative gene expression profiling of human umbilical vein endothelial cells and ocular vascular endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69454
Expression data from decitabine-treated and non-treated BR5FVB1-Akt cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The DNA methyl transferase inhibitor decitabine regulates gene expression in cancer cells.

Publication Title

Decitabine Enhances Lymphocyte Migration and Function and Synergizes with CTLA-4 Blockade in a Murine Ovarian Cancer Model.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE1693
A novel response to microtubule perturbation in meiosis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Cells were grown to saturation in YPD (YEP + 2% glucose) for 24 hours, diluted into YPA (YEP + 2% potassium acetate) at OD600= 0.3 and grown over night at 30C. Cells were washed with sterilized water the next day and re-suspended in SPII medium (0.3% potassium acetate, pH = 7.0) at OD600= 1.9 to induce sporulation. Cells were sporulated at room temperature or 30C as indicated. Sporulation medium containing benomyl was always prepared freshly on the day of the experiment following the directions in {Shonn, 2000 #90}. Briefly, DMSO (dimethyl sulfoxide, Sigma-Aldrich) or benomyl [Methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate, Sigma-Aldrich; 30 mg/ml stock in DMSO] was dissolved in near-boiling SPII medium to avoid precipitation. The medium was then allowed to slowly cool to 30C or room temperature. At the time of drug treatment, cells were filtered and immediately re-suspended in the medium containing benomyl or DMSO.

Publication Title

Novel response to microtubule perturbation in meiosis.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact