refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 179 results
Sort by

Filters

Technology

Platform

accession-icon GSE73888
Transcriptome analysis of liver and kidneys of rats chronically fed a NK603 Roundup-tolerant genetically modified maize
  • organism-icon Rattus norvegicus
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73886
Transcriptome analysis of liver and kidneys of rats chronically fed a NK603 Roundup-tolerant genetically modified maize [liver]
  • organism-icon Rattus norvegicus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

There is an ongoing debate on the potential toxicity of genetically modified food. The ability of rodent feeding trials to assess the potential toxicity of these products is highly debated since a 2-year study in rats fed NK603 Roundup-tolerant genetically modified maize, treated or not with Roundup during the cultivation, resulted in anatomorphological and blood/urine biochemical changes indicative of liver and kidney structure and functional pathology.

Publication Title

Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73884
Transcriptome analysis of liver and kidneys of rats chronically fed a NK603 Roundup-tolerant genetically modified maize [kidney]
  • organism-icon Rattus norvegicus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

There is an ongoing debate on the potential toxicity of genetically modified food. The ability of rodent feeding trials to assess the potential toxicity of these products is highly debated since a 2-year study in rats fed NK603 Roundup-tolerant genetically modified maize, treated or not with Roundup during the cultivation, resulted in anatomorphological and blood/urine biochemical changes indicative of liver and kidney structure and functional pathology.

Publication Title

Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP131375
Identification of transcriptome and metabolome signatures of fatty liver disease in HepaRG cells exposed to PCB 126 and glyphosate
  • organism-icon Homo sapiens
  • sample-icon 160 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of the polychlorinated biphenyl (PCB) 126, one of the most potent chemical inducing NAFLD. Additionnally, three concentration of the pesticide active ingredient glyphosate were tested. This ultimately suggested sensitive biomarkers of exposure. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. Our study provides grounds for the development of molecular signatures of fatty liver diseases to rapidly assess toxic effects of chemicals in the HepaRG cell line. Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the PCB were then tested from day 8 to day 14, in order to cover a wide range of biological effects, starting from low environmental exposures (100 pM) to high concentrations of (1 uM), with an intermediate concentration (10 nM). Three concentrations of glyphosate, or one concentration of the Roundup herbicide (Grand Travaux +) were also tested in the same system.

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP148096
Comparison of transcriptome responses to isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of HepaRG cells, a validated model for cellular steatosis, exposed to three concentration of quizalofop-p-ethyl, isoxaflutole and mesotrione Overall design: Differentiated HepaRGTM cells (HPR 116) were purchased from Biopredic International. The cells were kept in the general purpose medium until day 8, when the culture becomes well organized and includes well-delineated trabeculae and many canaliculi-like structures. Three concentrations of the different pesticide active ingredients (quizalofop-p-ethyl, isoxaflutole and mesotrione ) were then tested from day 8 to day 14. In order to ensure coverage of a wide range of potential biological effects, three concentrations of each active principle were tested; a concentration representative of low environmental exposure (0.1 uM), an intermediate concentration (10 uM) and a high concentration (1000 uM).

Publication Title

Comparison of transcriptome responses to glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE66060
Wide-scale transcriptome disturbance underlies liver and kidney pathology from chronic ultra low dose Roundup exposure
  • organism-icon Rattus norvegicus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP090937
Effects of plasticizers (bisphenol A, bisphenol AF) and an herbicide in MCF7 human breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We studied alterations in gene expression profiles of the MCF7 human breast cancer cells caused by bisphenol A, bisphenol AF and glyphosate using Illumina RNA sequencing platform. Overall design: Examination of endocrine disrupting effects of xenobiotics using the MCF7 cell line

Publication Title

Editor's Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE66058
Wide-scale transcriptome disturbance underlies liver and kidney pathology from chronic ultra low dose Roundup exposure [liver]
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH residues pose a particular risk to the kidneys and liver. However, the existence of biological effects with negative health implications at low environmentally relevant doses remains unresolved. A previous investigation addressed this issue, by conducting a 2-year feeding study, which included 10 female Sprague Dawley rats administered via drinking water with 0.1 ppb of a major Roundup formulation (50 ng/L glyphosate equivalent dilution). Hepatorenal toxicities, as well as urine and blood biochemistry disturbances at the 15th month of age were observed. In an effort to obtain molecular mechanistic insight into the underlying causes of these pathologies, we have carried out a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 genes were found to be disturbed respectively in liver and kidney (p<0.01, q<0.08, fold change >1.1). Among the 1319 genes whose expression was altered in both tissues, 3 functional categories were over-represented. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. The transcription factor networks that can account for these disruptions were centered on CREB1, ESR1, YY1, c-Myc and Oct3/4 activity, which are known to closely cooperate in the regulation of gene expression after hormonal stimulation. The analysis of pathways and toxicity processes showed that these disturbances in gene expression were representative of fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with the pathologies observed at an anatomical and histological level. Our results suggest that new studies incorporating testing principles from endocrinology and developmental epigenetics need to be performed to investigate potential consequences of exposure to low dose, environmental levels of GBH and glyphosate.

Publication Title

Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE66059
Wide-scale transcriptome disturbance underlies liver and kidney pathology from chronic ultra low dose Roundup exposure [kidney]
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH residues pose a particular risk to the kidneys and liver. However, the existence of biological effects with negative health implications at low environmentally relevant doses remains unresolved. A previous investigation addressed this issue, by conducting a 2-year feeding study, which included 10 female Sprague Dawley rats administered via drinking water with 0.1 ppb of a major Roundup formulation (50 ng/L glyphosate equivalent dilution). Hepatorenal toxicities, as well as urine and blood biochemistry disturbances at the 15th month of age were observed. In an effort to obtain molecular mechanistic insight into the underlying causes of these pathologies, we have carried out a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 genes were found to be disturbed respectively in liver and kidney (p<0.01, q<0.08, fold change >1.1). Among the 1319 genes whose expression was altered in both tissues, 3 functional categories were over-represented. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. The transcription factor networks that can account for these disruptions were centered on CREB1, ESR1, YY1, c-Myc and Oct3/4 activity, which are known to closely cooperate in the regulation of gene expression after hormonal stimulation. The analysis of pathways and toxicity processes showed that these disturbances in gene expression were representative of fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with the pathologies observed at an anatomical and histological level. Our results suggest that new studies incorporating testing principles from endocrinology and developmental epigenetics need to be performed to investigate potential consequences of exposure to low dose, environmental levels of GBH and glyphosate.

Publication Title

Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP166017
Quizalofop-p-ethyl induces adipogenesis in 3T3-L1 cells
  • organism-icon Mus musculus
  • sample-icon 120 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We provide here the alterations in gene expression profiles of 3T3-L1 cells, a validated model for adipogenesis, exposed to quizalofop-p-ethyl for 6h, 24h and 12 days. Overall design: Exposure to endocrine disrupting chemicals is a risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the lipid accumulation induced by glyphosate, 2,4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole and quizalofop-p-ethyl (QpE) in 3T3-L1 adipocytes. Only QpE caused triglyceride accumulation from a concentration of 1 µM. We thus conducted an in-depth investigation of molecular mechanisms responsible for the adipogenic effects of quizalopfop-p-ethyl by an RNA-seq analysis.

Publication Title

Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact