refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE9451
Identification of Signature Molecule-Marked Native Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background. The in vivo distribution status and molecular signature of bone marrow mesenchymal stem cells (MSC) remain unknown, although ex vivo expanded MSC have been used in numerous studies.

Publication Title

Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41164
Expression data from splenic B-cells isolated from DmU50(HG-b) mice or wild-type C57BL/6J
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Box C/D-type small nucleolar RNAs (snoRNAs) are functional RNAs responsible for mediating 2-O-ribose methylation of ribosomal RNAs (rRNAs) within the nucleolus. Previously, in relation to a novel chromosomal translocation in a human B-cell lymphoma, we identified U50HG, a non-protein-coding gene that hosted a box C/D-type U50 snoRNA within its intron. To investigate the physiological importance of the U50 snoRNA and its involvement in tumorigenesis, we generated a mouse model deficient in mouse U50 (mU50) snoRNA expression without altering the expression of mouse mU50 host-gene, mU50HG-b. The established mU50 snoRNA-deficient mice showed a significant reduction of mU50 snoRNA expression and the corresponding target rRNA methylation in various organs. Lifelong phenotypic monitoring showed that the mU50-deficient mice looked almost normal without accelerated tumorigenicity; however, a notable difference was the propensity for anomalies in the lymphoid organs.

Publication Title

Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression and its organ-specific phenotypic modulation.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact