refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 233 results
Sort by

Filters

Technology

Platform

accession-icon GSE35823
Expression data from Bovine leukemia virus (BLV) Tax-transfected HeLa cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Bovine leukemia virus (BLV) Tax is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach.

Publication Title

Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34750
Expression data from Human Tax transfected HeLa cell
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Human T cell leukemia virus type 1 (HTLV-1) Tax is potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. In this study, a large-scale host cell signaling events related to cellular proliferation were used to identify genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis.

Publication Title

Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-MEXP-219
Transcription profiling of mouse fetal liver cells obtained from MBT-1+/+ or MBT-1-/- embryos at E14.5
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Gene expression in the fetal liver cells obtained from MBT-1+/+ or MBT-1-/- embryos at E14.5 were analyzed using Affymetrix Genechip to assess the effect of the gene knock-out on hematopoietic cells.

Publication Title

Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE22065
Expression data from Merm1/Wbscr22 knock-down tumor cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Merm1/Wbscr22 is one of genes in chromosomal region deleted in Williams-Beuren syndrome, a multisystem developmental disorder. Wbscr22 contains a nuclear localization signal and an S-adenosyl-L-methionine-dependent methyltransferase fold, but its real function is completely unknown.In this study, to examine the function, we compared the gene expression profiles between control and Merm1/Wbscr22 knock-downed tumor cells.

Publication Title

The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE58862
Transcriptome response to nitric oxide in Pseudomonas aeruginosa
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

DNA microarray analysis was employed to investigate the transcriptome response to nitric oxide in Pseudomonas aeruginosa. We focused on the role played by the nitric oxide-response regulators DNR and FhpR and an oxygen-response regulator ANR in the response.

Publication Title

Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24784
Gene expression profile of pellicle cells of Pseudomonas aeruginosa
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

To investigate the gene expression profile of pellicle cells of Pseudomonas aeruginosa, microarray analysis was performed. Transcriptome profiles of pellicle cells and planktonic cells grown in LB medium were determined by Affymetrix GeneChip. Gene expression pattern that is specific to pellicle cells was evaluated by comparing the data set with that of planktonic cells.

Publication Title

Trade-off between oxygen and iron acquisition in bacterial cells at the air-liquid interface.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17296
Transcriptome analysis of the roxSR and anr mutant strains of Pseudomonas aeruginosa under aerobic conditions
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

To assess the role of two redox-sensitive transcriptional regulators, RoxSR and ANR, in Pseudomonas aeruginosa under aerobic conditions, microarray analysis was performed. Transcriptome profiles of roxSR mutant and anr mutant aerobically grown in LB medium were determined by Affymetrix GeneChip at both the exponential phase and early stationary phase and compared to that of the wild type strain.

Publication Title

Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26363
Hepatic gene expression profile in hydrogen water administrated SD rat
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The effects of the administration of molecular hydrogen-saturated drinking water (hydrogen water) on hepatic gene expression were investigated in rats. Using DNA microarrays, 548 upregulated and 695 downregulated genes were detected in the liver after a 4-week administration of hydrogen water. Gene Ontology analysis revealed that genes for oxidoreduction-related proteins, including hydroxymethylglutaryl CoA reductase, were significantly enriched in the upregulated genes.

Publication Title

Hepatic oxidoreduction-related genes are upregulated by administration of hydrogen-saturated drinking water.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE148350
Microglia transcriptome in a rat model of ischemic stroke
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Microglia are key regulators of inflammatory response after stroke and brain injury. Here we profiled the microglia transcriptome isolated from a spontaneously hypertensive rat model of focal cerebral ischemia.

Publication Title

Transcriptomic characterization of microglia activation in a rat model of ischemic stroke.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE16899
Hepatic gene expression profile of rats fed an iron-deficient diet
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Iron is an essential nutritional element; its deficiency in the body causes nutritional problems and a decrease in iron storage that can lead to anemia. The liver not only stores iron but is an important metabolic target as well. Dietary iron deficiency is associated with changes in the metabolism of nutrients such as lipids. However, to the best of our knowledge, a global analysis detailing the consequences of iron deficiency in the body has not yet been reported. We performed a comprehensive transcriptome analysis using DNA microarray technology to reveal the effects of iron deficiency on hepatic gene expression. Four-week-old rats were fed an iron-deficient diet or a control diet for 16 days. On day 17, the rats were sacrificed under anesthesia, and their livers were dissected for DNA microarray analysis. We identified 600 up-regulated and 500 down-regulated probe sets to characterize the iron-deficient diet group. The up-regulated probe sets contained genes for enzymes that are involved in cholesterol, amino acid, and glucose metabolisms, as well as in apoptosis. The down-regulated probe sets included genes for enzymes associated with lipid metabolism. Additionally, the 16-day iron-deficient diet induced anemia. Our gene expression analysis revealed that, as a result, cholesterol biosynthesis, gluconeogenesis, and apoptosis due to endoplasmic reticulum stress were accelerated, while fatty acid biosynthesis was suppressed by dietary iron deficiency. Our analysis also showed that cholesterol metabolism, including bile acid biosynthesis, was accelerated in the initial stages of cholesterol accumulation.

Publication Title

Dietary iron-deficient anemia induces a variety of metabolic changes and even apoptosis in rat liver: a DNA microarray study.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact