refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE44082
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE44081
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE44080
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE54870
Transcription profiling by array of wild type and arr1,10,12 mutant Arabidopsis seedlings treated with the cytokinin benzyladenine
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Effect of the cytokinin BA on wt and arr1,10,12 mutant seedlings

Publication Title

Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP171164
Linking cell dynamics with coexpression networks to characterize key events in chronic virus infections
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The host immune response against an infection requires the coordinated action of many diverse cell subsets that dynamically adapt to the pathogen threat. Here we combined WGCNA and DCQ to analyse time-resolved mouse splenic transcriptomes in acute and chronic LCMV infections. This approach allowed to better characterize the dynamic cell events occurring in complex tissues such as the induction of the adaptive T cell response which requires the coordination of monocytes/macrophages and CD8+ T cells. Overall design: mRNA profiles of CD8 T cells and macrophages (in duplicate days 0 and 7 post-infection) from C57BL/6 mice infected with 2x10E2 pfu of LCMV strain Docile, generated by deep sequencing.

Publication Title

Linking Cell Dynamics With Gene Coexpression Networks to Characterize Key Events in Chronic Virus Infections.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126449
Suppressive and stimulatory host processes during virus infection fate decisions
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus - immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. We found first, an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase. Overall design: mRNA profiles of spleens (in duplicate, days 0, 3, 5, 6, 7, 9 and 31 post-infection) and macrophages (in triplicate, day 6 post-infection) from C57BL/6 mice infected with 2x10E2 (acute) or 2x10E6 (chronic) pfu of LCMV strain Docile, generated by deep sequencing.

Publication Title

Systems analysis reveals complex biological processes during virus infection fate decisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP181649
Targeting HuH7 cells with JumonjiC Lysine Demethylase Inhibitors (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Characterization of gene expression changes in HuH7 HCC cells upon treatment with the Jumonji KDM inhibitor, JIB-04, GSK-J4 and SD-70. Overall design: Comparison of gene expression changes between HuH7 cells treated with JIB-04, GSK-J4 or SD-70 vs. DMSO

Publication Title

A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets.

Sample Metadata Fields

Sex, Age, Treatment, Race, Subject

View Samples
accession-icon GSE59807
Gene expression in the GWAT of ob/ob and ob/ob/Fsp27-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

GWAT store most of the TAG in mice, ob/ob mice is an obese mice. Ob/ob/Fsp27-/- mice are lean when compared with ob/ob mice. The GWAT weight was dramatically reduced in ob/ob/Fsp27-/- mice.

Publication Title

Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE42715
Expression data from open bariatric surgery patients - various adipose samples
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Diabetes and obesity are widespread diseases with signifciant socioeconomic implications. We used three different types of human adipose tissue (epigastric, visceral, and subcutaneous) in order to determine differences in global gene expression between these adipose depots in severely obese patients.

Publication Title

Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon GSE25012
WNT pathway activation promotes phenotypic reprogramming of glioblastoma derived cells in zebrafish nervous system microenvironment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

phenotypic reprogramming ability of teh zebtafish brain microenviroment on GBM derived cells controlled by the activation of endogenous Wnt pathway

Publication Title

Wnt activation promotes neuronal differentiation of glioblastoma.

Sample Metadata Fields

Specimen part, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact