refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 170 results
Sort by

Filters

Technology

Platform

accession-icon GSE19286
Microarray gene expression profiling of aorta genes of APOE-deficient mice receiving the ACE inhibitor captopril
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray gene expression profiling of aorta genes of APOE-deficient mice receiving atherosclerosis treatment with the ACE inhibitor captopril.

Publication Title

Angiotensin-converting enzyme inhibition down-regulates the pro-atherogenic chemokine receptor 9 (CCR9)-chemokine ligand 25 (CCL25) axis.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon SRP101876
Transcriptomic analysis of depleted uranium effects on adult zebrafish and progeny
  • organism-icon Danio rerio
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

This dataset describe the transcriptomic profiling of adult brain, gonades (testis and ovaries) of adult zebrafish exposed to 20µg/L of depleted uranium for 10 days. The progeny of the exposed fishes were also analysed at two-cells stage and 96 hours post fertilization Overall design: Biological samples (adult dissected tissues and whole embryos and larvae) were tested by RNASeq in duplicates

Publication Title

Whole transcriptome data of zebrafish exposed to chronic dose of depleted uranium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36547
Assessment of Ex Vivo Prostaglandin pathway activation in HSCs
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transplantation with low numbers of hematopoietic stem cells (HSCs), found in many of the publically accessible cryopreserved umbilical cord blood (UCB) units, leads to delayed time to engraftment, high graft failure rates, and early mortality in many patients. A chemical screen in zebrafish identified the prostaglandin compound, 16,16 dimethyl prostaglandin E2 (dmPGE2), to be a critical regulator of hematopoietic stem cell homeostasis. We hypothesized that an ex vivo modulation with dmPGE2 prior to transplantation would lead to enhanced engraftment by increasing the effective dose of hematopoietic stem cells (HSCs) in cord blood. A phase I trial of reduced-intensity double UCB transplantation was performed to evaluate safety, rates of engraftment and fractional chimerism of dmPGE2 enhanced UCB units. To explore potential causes of the lack of enhanced efficacy in the first cohort, we characterized HSCs to determine whether the prostaglandin pathway was being activated under the ex vivo incubation conditions (4C, 10M dmPGE2, 60 minutes). Incubation conditions were identified (37C, 10M dmPGE2, 120 minutes) that maximize the activation of the prostaglandin pathway by dmPGE2 in human CD34+ cells.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46569
Prostaglandin-modulated umbilical cord blood hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48541
Prostaglandin dose response on hematopoietic stem cells (25 & 37 deg C)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the "effective dose" of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46714
Prostaglandin duration required to elicit maximum response on hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46634
Prostaglandin dose response on hematopoietic stem cells (4 deg C)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041150
Pseudomonas aeruginosa PA30 transcriptome in tap and waste water
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Aim of this project was to determine the transcriptional response of the isolate PA30 to tap water and waste water.

Publication Title

Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041151
Pseudomonas aeruginosa PA49 transcriptome in tap and waste water
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Aim of this project was to determine the transcriptional response of the isolate PA49 to tap water and waste water.

Publication Title

Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP131337
RNA Seq analysis of pancreatic beta cell transcriptome during dedifferentiation
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report RNA Seq analysis using Illumina nextSeq500 of human beta cells EndoC-BH1 treated with FGF2 to induce dedifferentiation. FGF2 treatment induced dedifferentiation of EndoC-BH1 cells. Indeed, we observed a strong decrease in expression of ß-cell markers, (INS, MAFB, SLC2A2, SLC30A8 and GCK). Opposingly, we identifed positive markers of human ß cell dedifferentiation, as attested by increased expression of mature ß-cell disallowed transcription factors (MYC, HES1, SOX9 and NEUROG3). Interestingly, our temporal analysis revealed that loss of expression of ß cell specific markers preceded the induction of ß cell disallowed genes. Overall design: human beta cells EndoC-BH1 were treated with FGF2 (100ng/L) during 4, 24, 72 and 144h. RNA was isolated post treatment, along with the non-treated controls, and RNA Seq was performed using Illumina nextSeq500 to generate a full transcriptome analysis of gene expression during dedifferentiation of pancreatic beta cells.

Publication Title

Modeling human pancreatic beta cell dedifferentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact