refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 78 results
Sort by

Filters

Technology

Platform

accession-icon GSE75441
Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

One of the challenges of current research in prostate cancer is to improve the differential non-invasive diagnosis of prostate cancer (PCa) and benign prostate hyperplasia (BPH). Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer patients exhibit genuine and differential physical and biological properties. Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in prostate cancer.

Publication Title

Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55945
Gene Expression Profiling of Prostate Benign and Malignant Tissue
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We profiled genome-wide gene expression of human prostate benign and malignant tissue to identify potential biomarkers and immunotherapy targets.

Publication Title

Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52560
Pairwise Gene Expression Comparison between Gleason 3 and Gleason 4 Prostate Cancer
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this dataset, we report the gene expression of adjacent Gleason 3 and Gleason 4 foci microdissected from the same prostate cancer sample.

Publication Title

Gleason Score 7 Prostate Cancers Emerge through Branched Evolution of Clonal Gleason Pattern 3 and 4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74874
Whole-genome effects of elaidic and oleic acids
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Trans fatty acids (tFAs) may have deleterious, long-term transcriptional effects. To explore that issue, we assessed the effects of the tFA elaidic acid and its cis isomer oleic acid on transcription and, in parallel, on DNA methylation.

Publication Title

The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE23680
Expression data from hepatocellular carcinoma and adjacent normal liver tissue
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Assay of gene expression pattern differences between liver cancer tissue and normal liver tissue from the same mouse by microarray in 4 separate mice injected with recombinant adeno-associated viral (AAV) vector

Publication Title

Assessing the potential for AAV vector genotoxicity in a murine model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE11611
Combined gene expression and QTL analysis of soybean quantitative resistance to Phytophthora sojae
  • organism-icon Glycine max
  • sample-icon 2522 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

To identify soybean genes and QTLs associated with quantitative resistance to infection by the oomycete pathogen Phytophthora sojae, we conducted a very large-scale microarray experiment using 2522 Affymetrix GeneChips. The experiment involved assaying a total of 298 soybean recombinant inbred lines together with internal checks.

Publication Title

Infection and genotype remodel the entire soybean transcriptome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE139271
Host-microbe interactions following L. plantarum administration in SIV-infected and uninfected rhesus macaques
  • organism-icon Macaca mulatta
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

We used microarrays to detail the global gene expression changes in the ileum of SIV-infected and uninfected macaques following administration of L. plantarum.

Publication Title

PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP065613
Next Generation Sequencing Investigation of altered transcripts in presence of dominant-negative transcription factor
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose:The goals of this study was to determine alterations in expression levels of transcripts downstream of a dominant-negative transcription factor. Quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods was used to confirm the altered expression of targets. Methods: Striatal mRNA profiles of 11-month-old wild-type (WT) and Nestin-Cre X PPAR delta E411P mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Western blots, and immunofluorescence was also used to confirm if altered mRNA levels translated to changes at the protein level. Results: Using data analysis workflow, we mapped sequence reads for each sample to the mouse genome (build mm9) and identified transcripts in the striatum of WT and PPARdelta E411P mice. Conclusions: Our study found multiple transcripts altered in the striatum of the Nestin-Cre x PPAR delta E411P mice as compared to WT striatum, as generated by RNA-SEQ in biologic replicates. Overall design: Striatal mRNA profiles of 11-month-old wild type (WT) and Nestin-Cre X PPAR delta E411P mice were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.

Publication Title

PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP065967
Sheep milk transcriptome
  • organism-icon Ovis aries
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study presents a dynamic characterization of the sheep milk transcriptome aiming at achieving a better understanding of the sheep lactating mammary gland. Transcriptome sequencing (RNA-seq) was performed on total RNA extracted from milk somatic cells from ewes on days 10, 50, 120 and 150 after lambing. The experiment was performed in Spanish Churra and Assaf breeds, which differ in their milk production traits. Nearly 67% of the annotated genes in the reference genome (Oar_v3.1) were expressed in ovine milk somatic cells. For the two breeds and across the four lactation stages studied, the most highly expressed genes encoded caseins and whey proteins. We detected differentially expressed genes (DEGs) across lactation points, with the largest differences being found, between day 10 and day 150. Upregulated GO terms at late lactation stages were linked mainly to developmental processes linked to extracellular matrix remodeling. A total of 256 annotated DEGs were detected in the Assaf and Churra comparison. Some genes selectively upregulated in the Churra breed grouped under the endopeptidase and channel activity GO terms. These genes could be related to the higher cheese yield of this breed. Overall, this study provides the first integrated overview on sheep milk gene expression. Overall design: A total of eight healthy sheep were selected to be included in the experiment, four Assaf and four Churra ewes. 32 Milk Somatic Cells (MSCs) samples were collected on days 10, 50, 120 and 150 after lambing. In each time point 4 biological replicates from each breed were collected unless on day 120 that only three biological replicates from each breed were sequenced.

Publication Title

Variant discovery in the sheep milk transcriptome using RNA sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE19603
Expression data from Arabipdosis msh1 recA3 double mutant under heat stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In Arabidposis thaliana, the msh1 recA3 double mutant shows an extensive mitochondrial genome rearrangement and displays pronounced thermotolerance.

Publication Title

Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact