refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE83503
Key transcription factors altered in multiple myeloma patients revealed by logic programming approach combining gene expression pro ling and regulatory networks
  • organism-icon Homo sapiens
  • sample-icon 602 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Innovative approaches combining regulatory networks and genomic data are needed to extract pertinent biological informations to a better understanding of complex disease such as cancer and improve identi cation of entities leading to potential new therapeutic avenues. In this study, we confronted an automatic generated regulatory network with gene expression pro les (GEP) from a large cohort of patients with multiple myeloma (MM) and normal individuals with a causality reasonning method based of graph coloring to identify keynodes. Due to this causality reasoning, it is possible to infer proteins state from these GEP. Also, our method is able to simulate the impact of the perturbation of a node in this regulatory network to identify therapeutic targets. This method allowed us to nd that JUN/FOS and FOXM1, known in MM, and their inhibition as speci c to large group of patients with MM. Moreover, we associated the inhibition of FOXM1 activity with good prognosis, suggesting the inhibition of FOXM1 activity could be a survival marker. Finally, if JUN/FOS activation seems to be a way to strongly perturb the regulatory network in view of GEP, our result suggests the activation of FOXM1 could be interesting way to perturb some sub-group of profiles.

Publication Title

Logic programming reveals alteration of key transcription factors in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP118733
Transcriptomic analysis of Multiple Myeloma bone marrow microenvironment
  • organism-icon Homo sapiens
  • sample-icon 73 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the RNA sequencing of the non-tumoral CD138- fractions of 74 MM patient BM aspirates taken at the time of diagnosis. Overall design: The sequencing of total RNA from the non-tumoral CD138- fractions of 74 MM patient BM aspirates was performed using TruSeq Stranded mRNA Sample Preparation kit on a NextSeq 500 Illumina sequencing platform (Illumina) by 5 successive runs using NextSeq 500 High Output kit v2 (Illumina) generating in average 20 million pairs of reads per sample.

Publication Title

Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE55145
Gene expression profile alone is inadequate in predicting complete response in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We have analyzed gene expression microarray datasets from four different clinical trials to assess accuracy of gene expression based signature in predicting treatment complete response in patients with multiple myeloma. Two of four datasets were made available via The Intergroupe Francophone du Mylome (IFM) group, and remaining two datasets were downloaded from NCBI GEO portal with accession IDs: GSE19784 (HOVON65/GMMG-HD4 trial) and GSE9782 (APEX/SUMMIT trial). Analysis UUID: datasets_archive--2afcd42a-7e12-11e3-9145-5fcc1e060548--15-Jan-2014-12-23-44-CST.

Publication Title

Gene expression profile alone is inadequate in predicting complete response in multiple myeloma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37469
Minor clone provides a reservoir for relapse in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

In this study we addressed subclonal evolutionary process after treatment and subsequent relapse in multiple myeloma (MM) in a cohort of 24 MM patients treated either with conventional chemotherapy or with the proteasome inhibitor, bortezomib. Because MM is a highly heterogeneous disease coupled with a large number of DNA copy number alterations (CNAs) and loss of heterozygosity (LOH), we focused our study on the secondary genetic events: 1q21 gain, NF-kB activating mutations, RB1 and TP53 deletions, that seem to reflect progression. By using genome-wide high resolution SNP arrays we identified subclones with nonlinear complex evolutionary histories in a third of patients with myeloma, the relapse clone apparently derived from a minor subclone at diagnosis. Such reordering of the spectrum of genetic lesions during therapy is likely to reflect selection of genetically distinct subclones not initially competitive against the dominant population that survived chemotherapy, thrived and acquired new anomalies. In addition we found that emergence of minor subclones at relapse was significantly associated with bortezomib treatment. Altogether, these data support the idea of new strategy of future clinical trials in MM that would combine targeted therapy and subpopulations control to eradicate all myeloma subclones in order to obtain long-term remission.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE37414
Expression of genetic adaptability of cancer cells under treatment selection pressure in multiple myeloma patients
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Series GSE25262 patients on expression side.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE46317
Drosophila CNS glial microarray
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gliogenesis in the Drosophila CNS occurs during embryogenesis and also during the postembryonic larval stages. Several glial subtypes are generated in the postembryonic CNS through the proliferation of differentiated glial cells. The genes and molecular pathways that regulate glial proliferation in the postembryonic CNS are poorly understood. In this study we aimed to use gene expressing profiling of CNS tissue enriched in glia to identify genes expressed in glial cells in the postembryonic CNS.

Publication Title

Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7896
S1P mediates key targets associated with survival, proliferation and pluripotency in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human embryonic stem cells (hESCs) replicate by the process of self-renewal, whilst maintaining their pluripotency. Understanding the pathways involved in the regulation of this self-renewal process will assist in developing fully-defined conditions for the proliferation of hESCS required for therapeutic applications. We previously demonstrated a role for Sphingosine-1-phosphate (S1P) in the survival and proliferation of hESCs. The present study investigates further key signalling pathways and the downstream targets of S1P.

Publication Title

Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48760
Transcriptomes of the hybrid mouse diversity panel subjected to Isoproterenol challenge
  • organism-icon Mus musculus
  • sample-icon 208 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Transcriptomes performed on left ventricular heart samples from mice of the hybrid mouse diversity panel, a set of over a hundred inbred strains of mice. In this project, the strains were challenged with Isoproterenol, a beta-adrenergic agonist to induce cardiac hypertrophy and failure. Results are useful for the analysis of heart-related traits in mice

Publication Title

Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21278
A genomic atlas of mouse hypothalamic development
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The hypothalamus is a central regulator of many behaviors essential for survival such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, microarray analysis at 12 different developmental time points was performed. Developmental in situ hybridization was conducted for 1,045 genes dynamically expressed by microarray analysis. In this way, we identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis, and thus constructed a detailed molecular atlas of the developing hypothalamus. As proof of concept for the utility of this data, we used these markers to analyze the phenotype of mice where Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium, demonstrating an essential role for Shh in anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology, and dysfunction.

Publication Title

A genomic atlas of mouse hypothalamic development.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59054
Detailed localisation of diet-induced changes in gene expression in the murine small intestine.
  • organism-icon Mus musculus
  • sample-icon 114 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

An increasing amount of evidence suggests that the small intestine may play an important role in the development of metabolic diseases, such as obesity and insulin resistance. The small intestine provides the first barrier between diet and the body. As a result, dysregulation of biological processes and secretion of signal molecules from the small intestine may be of importance in the regulation and dysregulation of whole body metabolic homeostasis. Changes in gene expression of genes involved in lipid metabolism, cell cycle and immune response may contribute to the aetiology of diet-induced obesity and insulin resistance. In the current study we present a detailed investigation on the effects a chow diet, low fat diet and high fat diet on gene expression along the proximal-to-distal axis of the murine small intestine. The reported results provide a knowledge base for upcoming studies on the role of the small intestine in the aetiology of diet-induced diseases.

Publication Title

Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact