refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 33 results
Sort by

Filters

Technology

Platform

accession-icon SRP186906
Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Here we show that biotin-labelled miR-34a can be loaded to AGO2, and AGO2 immunoprecipitation can pulldown biotinylated miR-34a (Bio-miR pulldown). RNA-sequencing (RNA-seq) of the Bio-miR pulldown RNAs efficiently identified miR-34a mRNA targets, which could be verified with luciferase assays. In contrast to the approach of Bio-miR pulldown, RNA-seq of miR-34a overexpression samples had limited value in identifying direct targets of miR-34a. It seems that pulldown of 30 -Biotin-tagged miRNA can identify bona fide microRNA targets at least for miR34a. Overall design: biotin-labelled miR-34a pulldown and RNA sequencing of miR-34a overexpression samples

Publication Title

Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP110714
Transcription factor Foxo1 is essential for IL-9 induction in T helper cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Interleukin 9 (IL-9) producing helper T (Th9) cells play a crucial role in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune response. In addition to Th9, Th2, Th17 and Foxp3+ Treg cells produce IL-9. Transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that Foxo1, a forkhead family transcription factor, requires for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTregs. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells. Overall design: Transcriptional analysis of Th0 and TGF-beta 1 + IL-4 induced Th9 cells

Publication Title

Transcription factor Foxo1 is essential for IL-9 induction in T helper cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE39820
Induction and molecular signature of pathogenic Th17 cells
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TGF-beta3 produced by developing Th17 cells induces highly pathogenic T cells that are functionally and molecularly distinct from TGF-beta1-induced Th17 cells. The microarray data represent a distinct molecular signature for pathogenic versus non-pathogenic Th17 cells.

Publication Title

Induction and molecular signature of pathogenic TH17 cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP149572
FGF2 induces migration of human bone marrow stromal cells by increasing core-fucosylations on N-glycans of integrins
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq analysis of human bone marrow derived stromal cells (MSCs) treated for 24 hours with or wihout 10ng/ml Fibroblast Growth Factor 2 (FGF2) MSCs were derived from 4 different healthy donors. Cells were expanded to passage 3-4. Then cells were treated with FGF-2. 24 hours later, total RNA was extracted (total 8 samples). Overall design: RNA was submitted to BGI Americas for RNAseq. Here, QC was performed using Agilent 2100. All samples had a RIN above 8.0. For preparation for library, mRNA was enriched by using the oligo (dT) magnetic beads. mRNA was enriched by using the oligo (dT) magnetic beads. mRNA was fragmented into short fragments (about 200bp) using a fragmentation buffer. Then the first strand of cDNA was synthesized by random hexamer-primer using the mRNA fragments as templates. Buffer, dNTSPs, RNase H and DNA polymerase I were added to synthesize the second strand. The double strand cDNA was purified with QiaQuick PCR extraction kit and washed with EB buffer for end repair and base A addition. Finally, sequencing adapters were ligated to the fragments. The fragments are purified by Agarose gel electrophoresis and enriched by PCR amplification. The library products are ready for sequencing analysis via 2 sE50 lanes in Illumina HiSeqâ„¢ 2000.

Publication Title

FGF2 Induces Migration of Human Bone Marrow Stromal Cells by Increasing Core Fucosylations on N-Glycans of Integrins.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE92994
Critical role of the transcription factors IRF1 and BATF in preparing the chromatin landscape during Type 1 regulatory cell differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP095844
Critical role of the transcription factors IRF1 and BATF in preparing the chromatin landscape during Type 1 regulatory cell differentiation [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Type 1 regulatory T (Tr1) cells are induced by interleukin-27 (IL-27) and have critical roles in the control of autoimmunity and resolution of inflammation. Here, we show that the transcription factors IRF1 and BATF are induced early during treatment with IL-27 and are required for the differentiation and function of Tr1 cells in vitro and in vivo. Epigenetic and transcriptional analyses reveal that both transcription factors influence chromatin accessibility and expression of genes required for Tr1 cell function. IRF1 and BATF deficiencies uniquely alter the chromatin landscape, suggesting that these factors serve a pioneering function during Tr1 cell differentiation. Overall design: Transcriptinal analysis of IL27-induced of WT, Irf1 KO, and Batf KO cells

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE92940
Expression data for wildtype CD4+ T cells cells differentiated in Tr1 conditions for 2 hours
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Type 1 regulatory T (Tr1) cells are induced by the interleukin-27 (IL-27) and have critical roles in the control of autoimmunity and resolution of inflammation. Here, we show that the transcription factors IRF1 and BATF are induced early during treatment with IL-27 and are required for the differentiation and function of Tr1 cells in vitro and in vivo . Epigenetic and transcriptional analyses reveal that both transcription factors influence chromatin accessibility and expression of genes required for Tr1 cell function. IRF1 and BATF deficiencies uniquely alter the chromatin landscape, suggesting that these factors serve a pioneering function during Tr1 cell differentiation.

Publication Title

Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP029195
Mus musculus Transcriptome (Spike-in RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To normalize transcriptome data we combined total RNA isolated from 10^6 resting or activated B cells with 1 µl of 1/10 dilution of Ambion’s ERCC RNA Spike-in Mix (92 mRNA standards). mRNA was then isolated and processed following Illumina’s RNA-seq protocol v2.

Publication Title

Global regulation of promoter melting in naive lymphocytes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP050894
mRNA-Seq of the CA1 hippocampal subregion and liver from 3 month and 20 month old animals treated orally with vehicle or SAHA and mRNA-Seq of CA1 of 10 month old WT or APP/PS1-21 transgenic animals treated orally with vehicle or SAHA
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Aging and increased amyloid burden are major risk factors for cognitive diseases such as Alzheimer''s Disease (AD). An effective therapy does not yet exist. Here we use mouse models for age-associated memory impairment and amyloid deposition to study transcriptome and cell type-specific epigenome plasticity at the systems level in the brain and in peripheral organs. We show that at the level of epigenetic gene-expression aging and amyloid pathology are associated with inflammation and impaired synaptic function in the hippocampal CA1 region. While inflammation is associated with increased gene-expression that is linked to a subset of transcription factors, de-regulation of plasticity genes is mediated via different mechanisms in the amyloid and the aging model. Amyloid pathology impairs histone-acetylation and decreases expression of plasticity genes while aging affects differential splicing that is linked to altered H4K12 acetylation at the intron-exon junction in neurons but not in non-neuronal cells. We furthermore show that oral administration of the clinically approved histone deacetylase inhibitor Vorinostat not only restores spatial memory, but also exhibits an anti-inflammatory action and reinstates epigenetic balance and transcriptional homeostasis at the level of gene expression and exon usage. This is the first systems-level investigation of transcriptome plasticity in the hippocampal CA1 region in aging and AD models and of the effects of an orally dosed histone deacetylase inhibitor. Our data has important implications for the development of minimally invasive and cost-effective therapeutic strategies against age-associated cognitive decline. In fact, our data strongly suggest to test Vorinostat in patients suffering from AD. Overall design: mRNA profile from aged (CA1 and liver) and APP/PS1 (CA1) animals treated with oral vehicle or SAHA for 4 weeks

Publication Title

HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43970
Reconstruction of the dynamic regulatory network that controls Th17 cell differentiation by systematic perturbation in primary cells
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic regulatory network controlling TH17 cell differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact