refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 128 results
Sort by

Filters

Technology

Platform

accession-icon GSE24348
Expression data of Arabidopsis thaliana wild-type plants and quadruple nas T-DNA insertion mutants grown under different Fe supply conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Essential metals such as iron are required for healthy plant growth. Fe is an important cofactor and catalytic element in many biological processes. Fe and other metals can also be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalisation. The NAS genes are supposed to play an important role in Fe homeostasis. They are coding for enzymes called nicotianaminesynthase (NAS), which synthesize nicotianamine (NA) by a one-step condensation reaction of three molecules S-adenosyl-methionine. NA acts as a chelator for Fe, Cu, Ni and Zn and might be involved in the transport and allocation of Fe throughout the plant. We generated quadruple T-DNA insertion mutant nas plants to investigate NA function as described in Klatte et al., 2009, Plant Physiol. The nas4x-1 plants show an interveinal leaf chlorosis when turning from vegetative to reproductive stage, which intensifies when growing under Fe deficiency conditions. nas4x-1 plants have strongly reduced NA contents and show an elevated Fe deficiency response in roots. By performing microarray experiments we want to reveal global changes on transcriptional level in roots and leaves of nas4x-1 mutant compared to wild type plants grown under Fe supply and Fe deficiency conditions, respectively. The loss of NAS genes has a strong impact on the regulation of other metal homeostasis genes and allows to draw conclusions about nicotianamine function in metal homeostasis of A.thaliana.

Publication Title

Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP022043
A blood based 12-miRNA signature of Alzheimer patients
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We applied Next-Generation Sequencing (NGS) to miRNAs from blood samples of 48 AD (Alzheimer''s Disease) patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression level. Of these, 82 were higher and 58 lower abundant in samples from AD patients. We selected a panel of 12 miRNAs for a qRT-PCR analysis on a larger cohort of 202 samples including not only AD patients and healthy controls but also patients with other CNS illnesses: Multiple Sclerosis, Parkinson''s Disease, Major Depression, Bipolar Disorder, Schizophrenia, and Mild Cognitive Impairment, which is assumed to represent a transitional period before the development of AD. MiRNA target enrichment analysis of the selected 12 miRNAs indicated an involvement of miRNAs in nervous system development, neuron projection, neuron projection development, and neuron projection morphogenesis, respectively. Using this 12-miRNA signature we were able to differentiate between AD and controls with an accuracy of 93.3%, a specificity of 95.1%, and a sensitivity of 91.5%. The differentiation of AD from other neurological diseases was possible with accuracies between 73.8% and 77.8%. The differentiation of the other CNS disorders from controls yielded even higher accuracies. Overall design: Examination of the miRNA profile in blood samples of 48 AD patients and 22 controls

Publication Title

A blood based 12-miRNA signature of Alzheimer disease patients.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE39042
Expression data from MDA-MB-231 cells exposed to hypoxia and/or paclitaxel or epirubicin
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypoxia protects cancer cells from chemotherapeutic drug-induced cell death.

Publication Title

TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE73302
A549 Gene Expression Following Treatment with a No-Observed-Effect Level of Cisplatin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We compared the gene expression of A549 cells following 24 and 48 hours of treatment with a no-observed-effect level dose of cisplatin. The objective of the study is to identify genes that are differentially expressed in response to sub-lethal doses of cisplatin. This study helps identify not only treatment responses but also changes in gene expression that may confer cytoprotective mechanisms that allow these cells to survive treatment and to develop treatment resistance.

Publication Title

Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE61397
The transcriptional profile of human CD8+ lung resident memory T-cells
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

A specialized population of memory CD8+ T-cells resides in the epithelium of the respiratory tract to maintain protection against recurring infections. These cells express CD69 and the integrin 7 (CD103) and correspond to tissue resident memory T-cells (TRM) also described in intestine, liver and brain. A less well characterized population of CD103- CD8+ T-cells also resides in lungs and expresses markers characteristic of effector memory T-cells (TEM). We determined the transcriptional profiles of these memory CD8+ T-cell subsets retrieved from human lung resection samples and compared these with corresponding T-cell populations from peripheral blood of the same individuals. Our results demonstrate that each of the populations exhibits a distinct transcriptional identity. We found that the lung environment has a major impact on gene expression profiles. Thus, transcriptomes from CD103+ and CD103- subsets from lungs are much more resemblant to one another than to those from CD103+ or CD103- memory CD8+ T-cells from blood. TRM express specific sets of chemokine receptors, in accordance with their unique migratory properties. Furthermore, these cells constitutively express cytokine and cytotoxic genes for immediate effector function and chemokines to attract auxiliary immune cells. At the same time, multiple genes encoding inhibitory regulators are also expressed. This suggests that rapid ability to unleash effector functions is counterbalanced by programmed restraint, a combination that may be critical in the exposed but delicate tissue of the lung. Comprehensive sets of transcription factors were identified that characterize the memory CD8+ populations in the lungs. Prominent among these were components of the Notch pathway. Using mice genetically lacking expression of the NOTCH1 and NOTCH2 receptors in T-cells, we demonstrated that Notch controls both the number of lung TRM as well as the function of lung TEM. Our data illustrate the adaptation of lung resident T-cells to the requirements of the respiratory epithelial environment. Defining the molecular imprinting of these cells is important for rational vaccine design and may help to improve the properties of T-cells for adoptive cellular therapy.

Publication Title

Programs for the persistence, vigilance and control of human CD8<sup>+</sup> lung-resident memory T cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE43338
Gene expression profiling of colitis-associated and sporadic colorectal tumors in mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

To uncover molecular mechanisms specifically involved in the pathogenesis of colitis-associated colon cancer (CAC), we studied tumorigenesis in experimental models of CAC and sporadic CRC that mimic characteristics of human CRC. Using comparative whole genome expression profiling, we observed differential expression of epiregulin (Ereg) in mouse models of colitis-associated, but not sporadic colorectal cancer. Similarly, highly significant upregulation of Ereg expression was found in cohorts of patients with colitis-associated cancer in inflammatory bowel disease but not in sporadic colorectal cancer. Furthermore, tumor-associated fibroblasts were identified as major source of Ereg in colitis-associated neoplasias. Functional studies showed that Ereg-deficient mice, although more prone to colitis, are strongly protected from colitis-associated tumors, and data from serial endoscopic studies revealed that Ereg promotes growth rather than initiation of tumors.

Publication Title

Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26986
The consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In the present study, we investigated the consequences of n-3 polyunsaturated fatty acids (PUFA) depletion on hepatic lipid metabolism in mice fed during three months with a diet presenting a high n-6/n-3 PUFA ratio to induce n-3 PUFA depletion. Microarray analyses were performed to identify the molecular targets involved in the development of hepatic steatosis associated with n-3 PUFA depletion.

Publication Title

Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE64302
Expression Data from PtenF341V and Null Mouse Embryonic Fibroblasts
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor mechanisms are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN that differentially alter the Akt axis in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation. These findings expose distinct Akt-dependent and independent tumor suppressor functions of PTEN in stromal fibroblasts and tumor cells, respectively, that can be used to guide clinical care of breast cancer patients

Publication Title

Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE64303
Expression Data from Pten mutant epithelial cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor roles are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation

Publication Title

Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE58486
CaM Kinase II mediates maladaptive post-infarct remodeling but not acute myocardial ischemia/reperfusion injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Calcium/calmodulin-dependent protein kinase II (CaMKII) was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. However, the specific functions of the CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury have not been investigated yet. Thus, we studied the roles of the CaMKII isoforms and splice variants in I/R by the use of various CaMKII mutant mice. CaMKIIC was up-regulated already one day after I/R injury but surprisingly, acute I/R injury was neither affected in CaMKII-deficient mice, CaMKII-deficient mice in which the splice variants CaMKIIB and C were re-expressed nor in conditional CaMKII/ double-knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction. Leukocyte infiltration was not altered one day but five days after I/R, explaining the late effects of CaMKII deletion on post-I/R remodeling. Other than reported before, we demonstrate that CaMKII is not critically involved in the immediate mechanisms that regulate acute I/R injury but in the process of post-infarct remodeling.

Publication Title

CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact