refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 115 results
Sort by

Filters

Technology

Platform

accession-icon SRP132872
Targeted mutagenesis recapitulates brain tumor initiation in cerebral organoids (RNA-seq data set: 130d)
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Introduction of brain tumor-relevant genetic aberrations initiates different subtypes of brain tumor-like neoplasms in cerebral organoids Overall design: Comparison of abundances (TPM) from different brain tumor organoid groups

Publication Title

Author Correction: Genetically engineered cerebral organoids model brain tumor formation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP112726
Targeted mutagenesis recapitulates brain tumor initiation in cerebral organoids (RNA-seq data set: 45d)
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Introduction of brain tumor-relevant genetic aberrations initiates different subtypes of brain tumor-like neoplasms in cerebral organoids Overall design: Comparison of transcriptomes from different brain tumor organoid groups

Publication Title

Author Correction: Genetically engineered cerebral organoids model brain tumor formation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE73055
Expression data from hela cells stable clones overexpressing TFEB-GFP
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to identify the effects of TFEB overexpression on the hela cells transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the hela TFEB stable clones

Publication Title

TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE12147
Molecular characterization of novel peroxisome proliferator-activated receptor alpha agonists
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The nuclear receptor PPARalpha is recognized as the primary target of the fibrate class of hypolipidemic drugs and mediates lipid lowering in part by activating a transcriptional cascade that induces genes involved in the catabolism of lipids. We report here the characterization of three novel PPARalpha agonists with therapeutic potential for treating dyslipidemia. These structurally related compounds display potent and selective binding to human PPARalpha and support robust recruitment of coactivator peptides in vitro. These compounds markedly potentiate chimeric transcription systems in cell-based assays and strikingly lower serum triglycerides in vivo. The transcription networks induced by these selective PPARalpha agonists were assessed by transcriptional profiling of mouse liver after acute and chronic treatment. The induction of several known PPARalpha target genes involved with fatty acid metabolism were observed, reflecting the expected pharmacology associated with PPARalpha activation. We also noted the downregulation of a number of genes related to immune cell function, the acute phase response, and glucose metabolism; suggesting that these compounds may have anti-inflammatory action in the mammalian liver. Taken together, these studies articulate the therapeutic promise of a selective PPARalpha agonist.

Publication Title

Molecular characterization of novel and selective peroxisome proliferator-activated receptor alpha agonists with robust hypolipidemic activity in vivo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP154717
Profiling of vascular organoid endothelial cells and pericytes from iPS cells
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diabetes is prevalent worldwide and associated with severe health complications, including blood vessel damage that leads to cardiovascular disease and death. Here we report the development of a 3D blood vessel organoid culture system from human pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into interconnected capillary networks enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused human vascular tree, including human arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycemia and inflammatory cytokines in vitro induced thickening of the basal membrane, a hallmark of human diabetic microangiopathy. Human blood vessel, exposed in vivo to a diabetic milieu in mice, also mimick the microvascular changes in diabetic patients. We finally performed a drug screen and uncovered ?-secretase and DLL4-Notch3 as key drivers of “diabetic” vasculopathy in human blood vessels in vitro and in vivo. Thus, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable to model and identify drug targets for diabetic vasculopathy, which affects hundreds of millions of patients. Overall design: Vascular organoids were differentiated from iPSC cells and cultured in control, diabetic or diabetic media supplemented with the gamma-secretase inhibitor DAPT. Endothelial cells (CD31 positive) and pericytes (PDGFRbeta positive) were isolated by FACS and subjected to RNA Seq. Accordingly, CD31 positive endothelial cells and PDGFRbeta positive pericytes differentiated from iPS cells in 2D as a well as primary endothelial (HUVECS) and pericytes (Placenta) were FACS sorted and subjected to RNA Seq.

Publication Title

Human blood vessel organoids as a model of diabetic vasculopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP092491
Endothelial cells derived from iPSC in response to diabetic medium
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Diabetes is prevalent worldwide and associated with severe health complications, including blood vessel damage that leads to cardiovascular disease and death. We report the development of 3D blood vessel organoids from human embryonic and induced pluripotent stem cells. These human blood vessel organoids contain endothelium, perivascular pericytes, and basal membranes, and self-assemble into lumenized interconnected capillary networks. We treat these vascular organoids with hyperglycemia and inflammatory cytokines in vitro, which leads to basement membrane thickening, a structural hallmark of diabetic patient. To compare differential gene expression we performed RNAseq on endothelial cells, derived from control (NG) or diabetic (DI) vascular organoids. Overall design: Vascular organoids were differentiated from human iPS cells and treated for 3 weeks with a diabetic media containing 75mM Glucose, 1ng/mL TNF-a, 1ng/mL IL6 (DI) or left untreated in 17mM Glucose (NG). Endothelial cells were FACS sorted for CD31 directly into Trizol and stored at -80°C before RNA preparation. The 2 NG and 2 DI are pools of sorted endothelial cells from multiple vascular organoids (>100) from 2 independent differentiations/treatments.

Publication Title

Human blood vessel organoids as a model of diabetic vasculopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP102602
Constitutive Activation of HH-GLI Signaling in the Metanephric Mesenchyme causes Ureteropelvic Junction Obstruction during Mammalian Embryogenesis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study explores the underlying pathogenic mechanisms of congenital intrinsic obstruction of the ureteropelvic junction. A hedgehog-dependent mechanism underlying mammalin intrinsic ureteropelvic obstruction is defined. Overall design: Tissue was microdissected from the kidney-ureter junction at E13.5, one day after the onset of Ptc2-lacZ expression, from PTC-/-MM mice; 2 PTC2+ and 2 PTC2- cell populations were isolated using antibodies specific for PTC2 and FACS sorting.

Publication Title

Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP007650
RNA-seq and expression profile of WT and ZFP57 KO ES cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

RNA-seq and expression profile of WT and ZFP57 KO ES cells Overall design: RNA was extracted from both cell lines, PolyA RNA were extracted and RNA-seq was performed

Publication Title

In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE57519
Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57505
Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors (rat)
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally-derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally-derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from facial (neural crest-derived) and foreskin (mesodermally-derived) dermis, and the mesodermally-derived SKPs can make myelinating Schwann cells. Thus, non-neural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally-defined lineage boundaries are more flexible than widely thought.

Publication Title

Direct genesis of functional rodent and human schwann cells from skin mesenchymal precursors.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact