refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 67 results
Sort by

Filters

Technology

Platform

accession-icon SRP167442
RNA-seq of Mus musculus: WT and MTCH2 KO Naïve & Primed mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs. Overall design: Examination of WT and MTCH2 KO ESC and EpiLC mouse embryonic stem cells transcriptome

Publication Title

MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE12189
FACS-Assisted Microarray Profiling Implicates Novel Genes and Pathways in Zebrafish Gastrointestinal Tract Development
  • organism-icon Danio rerio
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Zebrafish (Danio rerio) gutGFP transgenic embryos [Tg(XlEef1a1:GFP)s854] were collected at 4 time points: 2 days post fertilization (dpf), 3, dpf, 4 dpf, 6 dpf. Embryos were dissociated into single cells and sorted by FACS based on GFP expression.

Publication Title

FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development.

Sample Metadata Fields

Age

View Samples
accession-icon GSE36753
Effects of (E)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) on P. aeruginosa PAO1 persister cells (three biological replicates)
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Twenty eight genes in PAO1 persister cells were consistently induced by treatment with 1 ug/mL BF8 for 1 h.

Publication Title

Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP073042
Gene expression profiling of retrovirus PDGFB-induced glioma
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed gene expression profilings of platelet-derived growth factor subunit B (PDGFB)-induced mouse glioma to compare the differential transcriptome profiles between Ctrl-T tumor cells and Olig2cKO tumor cells. Overall design: Expression profiling of Ctrl-T and Olig2cKO brain tumor (glioma) cells, normal oligodendrocyte progenitor cells (OPCs), normal astrocytes, and normal brain cortex by high-throughput sequencing.

Publication Title

Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP061758
Gene expression profiling of retrovirus PDGFB induced Glioma in control and Olig2cKO tumor
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed gene expression pofiling of of Olig2cKO and control glioma tumor and identified significantly changed genes Overall design: RNA-seq of control tumor tissues and Olig2cKO tumor tissues

Publication Title

Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15320
Microarray analysis of therapeutic (GM4) and non therapeutic (GM) NOD DC
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We have previously demonstrated that bone marrow-derived DC can prevent diabetes development and halt progression of insulitis in NOD mice, the mouse model of type 1 diabetes (T1D). The DC population that was most effective in this therapy had a mature phenotype, expressed high levels of costimulatory molecules and secreted low levels of IL-12p70. The protective DC therapy induced regulatory Th2 cells that shifted the dominant Th1 environment, present in NOD mice, to a mixed Th1/Th2 milieu. Microarray analysis of therapeutic and non-therapeutic DC populations revealed several novel molecules that could play important roles in the observed DC-mediated therapy. The therapeutic DC population expressed a unique pattern of costimulatory molecules and chemokines, which were confirmed by flow cytometry and ELISA assays. We have performed in vitro chemotaxis assays that demonstrated the therapeutic DC preferentially attracted Th2 cells, as compared to Th1, Treg or nave T cells. In addition we quantified the in vivo migration of activated islet-specific T cells to the pancreas using novel cell labeling techniques and 19F nuclear magnetic resonance. A subcutaenous injection of therapeutic DC alters the migration of both Th1 and Th2 cells to the pancreas, and Th1 cells appeared in the lymph node draining the site of DC injection. These results suggest that the therapeutic function of DC is mediated in part by the chemoattractive properties of these DC for diabetogenic Th1 cells.

Publication Title

Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17711
Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

cdipt is an essential gene in the synthesis of phosphatidylinositol (PtdIns) in the zebrafish, Danio rerio. The zebrafish mutant cdipt^hi559Tg (ZL782) carries a retroviral insertion which inactivates cdipt. Homozygous mutants exhibit hepatocellular endoplasmic reticulum (ER) stress and non-alcoholic fatty liver disease (NAFLD) pathologies at 5 days post fertilization (dpf). This study reveals a novel link between PtdIns, ER stress, and steatosis.

Publication Title

Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish.

Sample Metadata Fields

Age

View Samples
accession-icon SRP064758
Nuclear retention of mRNA in mammalian tissues
  • organism-icon Mus musculus
  • sample-icon 119 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Messenger RNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential it is considered extremely rare in mammals. Here to explore the extent of mRNA retention in metabolic tissues we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single molecule transcript imaging in mouse beta cells, liver and gut. We identify a wide range of protein coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. Overall design: we have total of 8 samples all are mice. liver nuclear RNA (2 replicates), liver cytoplasmic RNA (2 replicates), MIN6 (cell line) nuclear RNA (2 replicates), MIN6 (cell line) cytoplasmic RNA (2 replicates)

Publication Title

Nuclear Retention of mRNA in Mammalian Tissues.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE76295
Isolation and comparative analysis of mesenchymal stem cells from human umbilical cord II
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

A non-controversial and non-invasive source of adult stem cells (ASCs), particularly hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) is human umbilical cord blood. HSCs derived from cord blood have been used for treating leukemia and other blood disorders for the last 30 years. While the presence of MSCs in cord blood is limited, umbilical cord has been found to be promising source of MSCs. However, the cord is an anatomically complex organ and potential isolation of MSCs from its various parts has not been fully explored.

Publication Title

Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22776
Dynamics of the Transcriptome in the Primate Ovulatory Follicle
  • organism-icon Macaca mulatta
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Experiments were designed to evaluate changes in the transcriptome (mRNA levels) in the ovulatory, luteinizing follicle of rhesus monkeys, using a controlled ovulation (COv) model that permits analysis of the naturally selected, dominant follicle at specific intervals (0, 12, 24, 36 hours) after exposure to an ovulatory (exogenous hCG) stimulus during the menstrual cycle. Total RNA was prepared from individual follicles (n=4-8/timepoint), with an aliquot used for microarray analysis (AffymetrixTM Rhesus Macaque Genome Array) and the remainder applied to quantitative real-time PCR (q-PCR) assays. The microarray data from individual samples distinctly clustered according to timepoints, and ovulated follicles displayed markedly different expression patterns from unruptured follicles at 36 h. Between timepoint comparisons revealed profound changes in mRNA expression profiles. The dynamic pattern of mRNA expression for steroidogenic enzymes (CYP17A, CYP19A, HSD3B2, HSD11B1, HSD11B2), StAR, and gonadotropin receptors (LHCGR, FSHR) as determined by microarray analysis correlated precisely with those from blinded q-PCR assays. Patterns of mRNA expression for EGF-like factors (AREG, EREG) and processes (HAS2, TNFAIP6) implicated in cumulus-oocyte maturation/expansion were also comparable between assays. Thus, several mRNAs displayed the expected expression pattern for purported theca (e.g., CYP17A, AREG), granulosa (CYP19A, FSHR), cumulus (HAS2, TNFAIP6) cell, and surface epithelium (HSD11B) related genes in the rodent/primate preovulatory follicle. This database will be of great value in analyzing molecular and cellular pathways associated with periovulatory events in the primate follicle (e.g. follicle rupture, luteinization, inflammatory response, and angiogenesis), and for identifying novel gene products controlling mammalian fertility.

Publication Title

Dynamics of the transcriptome in the primate ovulatory follicle.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact