refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 569 results
Sort by

Filters

Technology

Platform

accession-icon SRP042093
TAF4 promotes pre-initiation complex formation and HNF4A occupancy of regulatory elements required to activation post-natal gene expression programme in hepatocytes (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The nuclear receptor HNF4A regulates embryonic and post-natal hepatocyte gene expression. Using hepatocyte-specific inactivation in mice, we show that the TAF4 subunit of TFIID acts as a cofactor for HNF4A in vivo and that HNF4A interacts directly with the TAF4-TAF12 heterodimer in vitro. In vivo, TAF4 is required to maintain HNF4A-directed embryonic gene expression at post-natal stages and for HNF4A-directed activation of post-natal gene expression. TAF4 promotes HNF4A occupancy of functional cis-regulatory elements located adjacent to the transcription start sites of post-natal expressed genes and for pre-initiation complex formation required for their expression. Promoter-proximal HNF4A-TFIID interactions are therefore required for pre-initiation complex formation and stable HNF4A occupancy of regulatory elements as two concomitant mutually dependent processes. Overall design: RNA profiles in wild-type and Taf4-/- livers by deep sequencing

Publication Title

TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22824
Gene expression in retina and LGN of wild type and Chrnb2-/- mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice lacking the beta 2 subunit (Chrnb2) of the neuronal nicotinic acetylcholine receptor display altered retinal waves and disorganized projections of the retinal ganglion cells to the lateral geniculate nucleus (LGN). mRNA populations from retinas and LGN from Chrnb2-/-and wild type (C57BL/6J) mice were compared at 4 days postnatal, when RGC segregation to the LGN begins in WT mice. Retinal mRNAs were also compared at adulthood.

Publication Title

Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE52012
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition
  • organism-icon Sus scrofa
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particulary involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.

Publication Title

Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38588
Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition
  • organism-icon Sus scrofa
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The liver transcriptomes of two female groups (High and Low) with phenotypically extreme intramuscular fatty acid composition were sequenced using RNA-Seq [accn: SRA053452, subid: 86092, Bioproject: PRJNA168072]. A total of 146 and 180 unannotated protein-coding genes were identified in intergenic regions for the L and H groups, respectively. In addition, a range of 5.8 to 7.3% of repetitive elements was found, with SINEs being the most abundant elements. The expression in liver of 186 (L) and 270 (H) lncRNAs was also detected. The higher reproducibility of the RNA-Seq data was validated by RT-qPCR and porcine expression microarrays, therefore showing a strong correlation between RT-qPCR and RNA-Seq data (ranking from 0.79 to 0.96), as well as between microarrays and RNA-Seq (r=0.72). A differential expression analysis between H and L animals identified 55 genes differentially-expressed between groups. Pathways analysis revealed that these genes belong to biological functions, canonical pathways and three gene networks related to lipid and fatty acid metabolism. In concordance with the phenotypic classification, the pathways analysis inferred that linolenic and arachidonic acids metabolism was altered between extreme individuals. In addition, a connection was observed among the top three networks, hence suggesting that these genes are interconnected and play an important role in lipid and fatty acid metabolism.

Publication Title

Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP075476
Differentiation and specification of resident tissue macrophages [SMART-Seq2]
  • organism-icon Mus musculus
  • sample-icon 158 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP075553
Differentiation and specification of resident tissue macrophages [MARS-seq]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 1500

Description

Tissue resident macrophages are functionally diverse cells that share an embryonic mesodermal origin. However, the mechanism(s) that control their specification remain unclear. We performed transcriptional, molecular and in situ spatio-temporal analyses of macrophage development in mice. We report that Erythro-Myeloid Progenitors generate pre-macrophages (pMacs) that simultaneously colonize the head and caudal embryo from embryonic day (E)9.5 in a chemokine-receptor dependent manner, to further differentiate into tissue F4/80+ macrophages. The core macrophage transcriptional program initiated in pMacs, is rapidly diversified in early macrophages as expression of transcriptional regulators becomes tissue-specific. For example, the preferential expression of the transcriptional regulator Id3 initiated in early fetal liver macrophages appears critical for Kupffer cell differentiation, as inactivation of Id3 causes a selective Kupffer cell deficiency that persists in adults. We propose that colonization of developing tissues by differentiating macrophages is immediately followed by their specification as they establish residence, hereby generating the macrophage diversity observed in post-natal tissues. Overall design: RNA-sequencing of sorted macrophage cell populations (Mac) and progenitors (EMP, pMac) from various tissues and collected at different time points, including technical and biological replicates

Publication Title

Specification of tissue-resident macrophages during organogenesis.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP122966
Transcriptome of lung tissue from C57BL/6 mice with or without neutrophil depletion at ZT04 and ZT16
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study looks at the dirsruption of lung circadian transcriptome that occurs when neutrophils are depleted (by application of antibodies (anti-Ly6G-1A8) to wildtype C57BL/6 mice, or Diphtheria toxin (DT) to neutrophil-specific DT-susceptible mice (MRP8-Cre;iDTR-flox)). Overall design: Lungs were harvested from neutrophil-depleted (antibody or DT) or non-depleted mice, in normal light-controlled mouse facility (ZT4) or 12h inverted light cabinets (ZT16). Experiments were carried out over 3 batches (July 2017, September 2017, and April 2018), with 3 or 4 mice per group. Antibody-depleted and non-depleted mice were tested for the July 2017 and September 2017 batches, whereas DT-depleted mice were tested only in April 2018.

Publication Title

Neutrophils instruct homeostatic and pathological states in naive tissues.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE146093
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman), Infinium MethylationEPIC

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE146088
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE48964
Expression data from Adipose Stem Cells (ASC) from morbidly obese and non-obese individuals
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and stemcellness has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells.

Publication Title

Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact