refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon SRP159288
RNA-Seq as part of a study to investigate impact of Atg16l on Il22 signalling in the intestinal mucosa
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1?IEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1?IEC and Atg16l1?IEC/Xbp1?IEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22 induced ileal inflammation in Atg16l1?IEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium. Overall design: Organoids from Atg16l intestinal knockout vs. Wildtype

Publication Title

ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE12261
Global effects of 2-methoxyestradiol on smooth muscle cell hyperproliferation and vascular remodeling in atherosclerosis
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to detail transcriptional changes in cultured human smooth muscle cells in response to acute and chronic 2-methoxyestradiol treatment

Publication Title

2-Methoxyestradiol blocks the RhoA/ROCK1 pathway in human aortic smooth muscle cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126861
Genome-Wide DNA Methylation Encodes Cardiac Transcriptional Reprogramming in Human Ischemic Heart Failure [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background – Epigenetic alterations are stable modifications to  chromatin structure that occur in response to environmental cues such as hypoxia  or altered nutrient delivery. DNA methylation is a well-established and dynamic DNA modification that contributes to the regulation of gene expression. In the current study, we test the hypothesize that ischemic heart failure is defined by a distinct signature of DNA methylation that corresponds with altered expression of genes involved in cardiac ventricular dysfunction. Methods and Results – Using a methylation array, we quantified genome-wide DNA methylation of endomyocardial samples acquired from patients  with ischemic (n = 6) or non-ischemic (n = 5) heart failure. RNA-sequencing analysis was performed in the same samples to identify transcriptomic changes (Fold Change > 1.5, Q < 0.05, FPKM > 2) associated with differential methylation (|Percent Change| > 5%, p < 0.05). Of the promoter-associated CpG Islands, which are well-established regions of negative transcriptional regulation, we identified a signature of robust hypermethylation. The methylation changes linked to significantly decreased transcripts included key fatty acid metabolic regulators (e.g. KLF15, AGPAT9, APOA1, and MXD4). Among the few hypomethylated and induced genes was PFKFB3, which encodes for the rate-limiting enzyme of glycolysis. Gene set enrichment analysis  identified TGFß  as a nodal upstream regulator of the methylation changes, potentially supporting a role of DNA methylation in the increased fibrosis and apoptosis that accompanies ischemic heart failure.  Conclusions – Our data identify  that the DNA methylation signature recapitulates the pathologic hallmarks of ischemic heart failure. Furthermore, we show that differential DNA methylation of CpG islands within the promoter depict alterations in metabolic substrate utilization known to occur in ischemic heart failure, and may govern a return to the fetal-like metabolic program. Overall design: RNA Sequencing analysis of left ventricle samples in 11 subjects with end-stage heart failure.

Publication Title

Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE69780
Genome-wide mRNA level and mRNA translation analysis of eIF4E silencing in MCF10A cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Translation initiation factor eIF4E is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. Using immortalized human breast epithelial cells, we report that elevated expression of elF4E translationally activates the TGF pathway, promoting cell invasion, loss of cell polarity, increased cell survival and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate selective translation of integrin 1 mRNA, which drives the translationally controlled assembly of a TGF receptor signaling complex containing 31 integrins, -catenin, TGF receptor I, E-cadherin and phosphorylated Smads2/3. This receptor complex acutely sensitizes non-malignant breast epithelial cells to activation by typically sub-stimulatory levels of activated TGF. TGF can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF, eIF4E confers selective mRNA translation, reprogramming non-malignant cells to an invasive phenotype by reducing the set-point for stimulation by activated TGF. Overexpression of eIF4E may be a pro-invasive facilitator of TGF activity.

Publication Title

Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP132709
Whole blood transcriptome analysis of Septic shock patients according to early therapy response
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2500

Description

Septic shock is the most severe complication of sepsis, associated with high mortality. The patient's response to supportive therapy is very heterogeneous and the underlying mechanisms are still elusive. In order to identify which are the actors (genes and pathways) that play a role in establishing the response, we investigate the whole blood transcriptome in septic shock patients with positive and negative responses to early supportive hemodynamic therapy, assessed by changes in SOFA scores within the first 48 hours from ICU admission. We pinpointed genes and pathways that are differently modulated and enriched respectively within 48hrs between responders and non-responders. Overall design: We analyzed 31 patients (17 Responders and 14 Not Responders to early therapy). For each patient, 2 samples were collected. In particular the first sample (T1) collected within 16 hours from ICU admission whereas the second (T2) collected within 48 hours from ICU admission. Experimental groups (Responders and Not Responders) are defined accordingly with SOFA scores improvements within 48 hours.

Publication Title

Identification of a transcriptome profile associated with improvement of organ function in septic shock patients after early supportive therapy.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE15316
Differential expression of rituximab responders vs. non responders on 3 different blood cell types
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

New and effective therapeutical options are available for the treatment of Rheumatoid Arthritis. One of such treatments is rituximab, and chimeric anti-CD20 antibody that selectively depletes the CD20+ B cell subpopulation.

Publication Title

Identification of candidate genes for rituximab response in rheumatoid arthritis patients by microarray expression profiling in blood cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE42742
Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in nave hosts.

Publication Title

Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12051
Microarray predictor of response to infliximab in rheumatoid arthritis (RA) patients
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

We sought to find a gene-expression multigene predictor of response to infliximab therapy in Rheumatoid Arthritis patients. Using internal and external cross-validation systems we have built and validated an 8-gene predictor for response to infliximab.

Publication Title

An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE45642
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder [control set]
  • organism-icon Homo sapiens
  • sample-icon 667 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.

Publication Title

Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE56704
Densely Ionizing Radiation Effects on the Microenvironment Promote Aggressive Trp53 Null Mammary Carcinomas
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Densely ionizing radiation is a major component of the space radiation environment and has potentially greater carcinogenic effect compared to sparsely ionizing radiation that is prevalent in the terrestrial environment. It is unknown to what extent the irradiated microenvironment contributes to the differential carcinogenic potential of densely ionizing radiation. To address this gap, 10-week old BALB/c mice were irradiated with 100 cGy sparsely ionizing g-radiation or 10, 30, or 80 cGy of densely ionizing, 350 MeV/amu Si particles and transplanted 3 days later with syngeneic Trp53 null mammary fragments. Tumor appearance was monitored for 600 days. Tumors arising in Si-particle irradiated mice had a shorter median time to appearance, grew faster and were more likely to metastasize. Most tumors arising in sham-irradiated mice were ER-positive, pseudo-glandular and contained both basal keratin 14 and luminal keratin 8/18 cells (designated K14/18), while most tumors arising in irradiated hosts were K8/18 positive (designated K18) and ER negative. Comparison of K18 vs K14/18 tumor expression profiles showed that genes increased in K18 tumors were associated with ERBB2 and KRAS while decreased genes overlapped with those down regulated in metastasis and by loss of E-cadherin. Consistent with this, K18 tumors grew faster than K14/18 tumors and more mice with K18 tumors developed lung metastases compared to mice with K14/18 tumors. However, K18 tumors arising in Si-particle irradiated mice grew even faster and were more metastatic compared to control mice. A K18 Si-irradiated host profile was enriched in genes involved in mammary stem cells, stroma, and Notch signaling. Thus systemic responses to densely ionizing radiation enriches for a ER-negative, K18-positive tumor, whose biology is more aggressive compared to similar tumors arising in non-irradiated hosts.

Publication Title

Densely ionizing radiation acts via the microenvironment to promote aggressive Trp53-null mammary carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact