refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE37255
Arabidopsis thaliana wild-type and pskr1-5 transcriptome upon the compatible interaction with Hyaloperonospora arabidopsidis
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and pskr1-5 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.

Publication Title

Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP132709
Whole blood transcriptome analysis of Septic shock patients according to early therapy response
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2500

Description

Septic shock is the most severe complication of sepsis, associated with high mortality. The patient's response to supportive therapy is very heterogeneous and the underlying mechanisms are still elusive. In order to identify which are the actors (genes and pathways) that play a role in establishing the response, we investigate the whole blood transcriptome in septic shock patients with positive and negative responses to early supportive hemodynamic therapy, assessed by changes in SOFA scores within the first 48 hours from ICU admission. We pinpointed genes and pathways that are differently modulated and enriched respectively within 48hrs between responders and non-responders. Overall design: We analyzed 31 patients (17 Responders and 14 Not Responders to early therapy). For each patient, 2 samples were collected. In particular the first sample (T1) collected within 16 hours from ICU admission whereas the second (T2) collected within 48 hours from ICU admission. Experimental groups (Responders and Not Responders) are defined accordingly with SOFA scores improvements within 48 hours.

Publication Title

Identification of a transcriptome profile associated with improvement of organ function in septic shock patients after early supportive therapy.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP061522
Truncation of LOC100288798 (SLC38A4-AS) lncRNA in human haploid KBM7 cell line
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation

Publication Title

A human haploid gene trap collection to study lncRNAs with unusual RNA biology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15583
Neuroblastoma cell lines under normoxic and hypoxic conditions
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques.

Publication Title

The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE64763
Expression data from normal myometrium, leiomyomata, and leiomyosarcomas
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The molecular etiology of uterine leiomyosarcoma (ULMS) is poorly understood, which accounts for the wide disparity in outcomes among women with this disease. We examined and compared the molecular profiles of ULMS, fibroids, and normal myometrium (NL) to identify clinically relevant molecular subtypes. RNA was hybridized to Affymetrix U133A 2.0 transcription microarrays. Differentially expressed genes and pathways were identified using standard methods.

Publication Title

Molecular subtypes of uterine leiomyosarcoma and correlation with clinical outcome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE24068
Gene expression from SCID-hu mice treated with saline (control) or intermittent PTH
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The data present global gene expression profile of whole human bones, implanted in SCID mice (SCID-hu model), then engrafted with the myeloma cell line, Hg, and treated with saline or PTH for 4 weeks.

Publication Title

Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9361
Functional interaction between a PIP2 novel polyA polymerase and type 1 PIPKIalpha
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A loss of StarPap would be predicted to result in a decrease in cellular levels of mRNAs which it polyadenylates. Moreover, if PIPKIalpha has a function relationship with StarPap, knockdown of PIPKIalpha should cause a decrease in a pool of target mRNAs which require both StarPap and PIPKIalpha for their maturation. To test this, we independently knocked down StarPap and PIPKIalpha, and performed microarray analysis of total polyadenylated mRNAs from each group.

Publication Title

A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2883
Ca2+-dependent Transcription Patterns in Human Cerebrovascular Smooth Muscle
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Altered Ca2+ handling has both immediate physiological effects and long-term genomic effects on vascular smooth muscle function. Previously we have shown that elevation of cytoplasmic Ca2+ through voltage-dependent Ca2+ channels (VDCCs) or store-operated Ca2+ channels (SOCCs) results in phosphorylation of the Ca2+/cAMP response element binding protein (CREB) in cerebral arteries. Here we demonstrate that stimulation of these different Ca2+ influx pathways results in transcriptional activation of a distinct, yet overlapping set of genes, and that the induction of selected CRE-regulated genes is prevented by the addition of corresponding Ca2+ channel blockers. Using oligonucleotide array analysis, changes in mRNA levels were quantified following membrane depolarization with K+ or depletion of intracellular Ca2+ stores with thapsigargin in human cerebral vascular smooth muscle cells. Array results for differentially regulated genes containing a CRE were confirmed by quantitative RT-PCR, and corresponding changes in protein expression were shown by Western blot analysis and immunofluorescence. Membrane depolarization induced a transient increase in c-fos mRNA and a sustained increase in early growth response-1 (Egr-1) mRNA and protein that were inhibited by application of the VDCC blocker, nimodipine, and the SOCC inhibitor, 2-aminoethoxydiphenylborate (2-APB). Thapsigargin induced a sustained increase in c-fos mRNA and MAP kinase phosphatase-1 (MKP-1) mRNA and protein, and these effects were decreased by 2-APB but not by nimodipine. Our findings thus indicate that Ca2+ entry through VDCCs and SOCCs can differentially regulate CRE-containing genes in vascular smooth muscle and imply that signals involved in growth modulation are both temporally and spatially regulated by Ca2+.

Publication Title

Ca2+ source-dependent transcription of CRE-containing genes in vascular smooth muscle.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE6238
Mechanisms of Aging in Senescence-Accelerated Mice
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Background: Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J).

Publication Title

Mechanisms of aging in senescence-accelerated mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059959
Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: Long non-coding RNAs (lncRNAs) are increasingly implicated as gene regulators and may ultimately be more numerous than protein-coding genes in the human genome. Despite large numbers of reported lncRNAs, reference annotations are likely incomplete due to their lower and tighter tissue-specific expression compared to mRNAs. An unexplored factor potentially confounding lncRNA identification is inter-individual expression variability. Here, we characterize lncRNA natural expression variability in human primary granulocytes. Results: We annotate granulocyte lncRNAs and mRNAs in RNA-seq data from ten healthy individuals, identifying multiple lncRNAs absent from reference annotations, and use this to investigate three known features (higher tissue-specificity, lower expression, and reduced splicing efficiency) of lncRNAs relative to mRNAs. Expression variability was examined in seven individuals sampled three times at one or more than one month intervals. We show that lncRNAs display significantly more inter-individual expression variability compared to mRNAs. We confirm this finding in 2 independent human datasets by analyzing multiple tissues from the GTEx project and lymphoblastoid cell lines from the GEUVADIS project. Using the latter dataset we also show that including more human donors into the transcriptome annotation pipeline allows identification of an increasing number of lncRNAs, but minimally affects mRNA gene number. Conclusions: A comprehensive annotation of lncRNAs is known to require an approach that is sensitive to low and tight tissue-specific expression. Here we show that increased inter-individual expression variability is an additional general lncRNA feature to consider when creating a comprehensive annotation of human lncRNAs or proposing their use as prognostic or disease markers. Overall design: We used PolyA+ RNA-seq data from human primary granulocytes of 10 healthy individuals to de novo annotate lncRNAs and mRNAs in this cell type and ribosomal depleted (total) RNA-seq data from seven of these individuals sampled three times to analyze lncRNA amd mRNA expression variability

Publication Title

Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact