refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE44292
Gene Expression data from mouse bone marrow derived macrophages treated with different inflammatory stimuli
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The activation profiles of macrophages under different immune and inflammatory conditions have generated great interest. LPS, in particular, is a commonly used in vitro model of infection and inflammation studies in macrophages. We have used gene expression microarrays to define the effects of each of three variables; LPS dose, LPS vs. interferons beta and gamma, and genetic background on the transcriptional response of mouse bone marrow-derived macrophages

Publication Title

Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17612
Comparison of post-mortem tissue from brain BA10 region between schizophrenic and control patients.
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function.

Publication Title

Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE21935
Comparison of post-mortem tissue from Brodman Brain BA22 region between schizophrenic and control patients
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional analysis of the superior temporal cortex (BA22) in schizophrenia: Pathway insight into disease pathology and drug development

Publication Title

Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE16792
Temporal changes of gene expression in rat kidney and lung, and the effect of prior growth inhibition on these changes
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Temporal changes of gene expression from 1-wk- to 5-wk-old rat in kidney and lung, and the effect of prior growth inhibition on these genetic changes.

Publication Title

Coordinated postnatal down-regulation of multiple growth-promoting genes: evidence for a genetic program limiting organ growth.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE3077
Dillution series comparison of Affymetrix and Illumina Expression Platforms
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The growth in popularity of RNA expression microarrays has been accompanied by concerns about the reliability of the data especially when comparing between different platforms. Here we present an evaluation of the reproducibility of microarray results using two platforms, Affymetrix GeneChips and Illumina BeadArrays. The study design is based on a dilution series of two human tissues (blood and placenta), tested in duplicate on each platform. By a variety of measures the two platforms yielded data of similar quality and properties. The results of a comparison between the platforms indicate very high agreement, particularly for genes which are predicted to be differentially expressed between the two tissues. Agreement was strongly correlated with the level of expression of a gene. Concordance was also improved when probes on the two platforms could be identified as being likely to target the same set of transcripts of a given gene. These results shed light on the causes or failures of agreement across microarray platforms. The set of probes we found to be most highly reproducible can be used by others to help increase confidence in analyses of other data sets using these platforms.

Publication Title

Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21039
Gene Expression Profiles from PBMC are Sensitive to Short Processing Delays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the analysis of peripheral blood gene expression, timely processing of samples is essential to ensure that measurements reflect in vivo biology, rather than ex vivo sample processing variables. The effect of processing delays on global gene expression patterns in peripheral blood mononuclear cells (PBMC) was assessed by isolating and stabilizing PBMC-derived RNA from three individuals either immediately after phlebotomy or following a 4 hour delay. RNA was labeled using NuGEN Ovation labeling and probed using the Affymetrix HG U133plus 2.0 GeneChip. Comparison of gene expression levels (p<0.05 and 2-fold expression change) identified 327 probe sets representing genes with increased expression and 46 indicating decreased expression after 4 hours. The trends in expression patterns associated with delayed processing were also apparent in an independent set of 276 arrays of RNA from human PBMC samples with varying processing times. These data indicate that the time between sample acquisition, initiation of processing, and when the RNA is stabilized should be a prime consideration when designing protocols for translational studies involving PBMC gene expression analysis.

Publication Title

Gene Expression Profiles from Peripheral Blood Mononuclear Cells Are Sensitive to Short Processing Delays.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE11886
Gene expression analysis of macrophages from ankylosing spondylitis patients reveals interferon-gamma dysregulation
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

OBJECTIVE: To determine whether macrophages, a type of cell implicated in the pathogenesis of ankylosing spondylitis (AS), exhibit a characteristic gene expression pattern. METHODS: Macrophages were derived from the peripheral blood of 8 AS patients (median disease duration 13 years [range <1-43 years]) and 9 healthy control subjects over 7 days with the use of granulocyte-macrophage colony-stimulating factor. Cells were stimulated for 24 hours with interferon-gamma (IFNgamma; 100 units/ml), were left untreated for 24 hours, or were treated for 3 hours with lipopolysaccharide (LPS; 10 ng/ml). RNA was isolated and examined by microarray and real-time quantitative reverse transcription-polymerase chain reaction analysis. RESULTS: Microarray analysis revealed 198 probe sets detecting the differential expression of 141 unique genes in untreated macrophages from AS patients compared with healthy controls. Clustering and principal components analysis clearly distinguished AS patients and controls. Of the differentially expressed genes, 78 (55%) were IFN-regulated, and their relative expression indicated a reverse IFN signature in AS patient macrophages, where IFNgamma-up-regulated genes were underexpressed and down-regulated genes were overexpressed. Treatment of macrophages with exogenous IFNgamma normalized the expression of these genes between patients and controls. In addition, the messenger RNA encoded by the IFNgamma gene was approximately 2-fold lower in AS patient macrophages at baseline (P = 0.004) and was poorly responsive to LPS (P = 0.018), as compared with healthy controls. CONCLUSIONS: Our findings reveal consistent differences in gene expression in macrophages from AS patients, with evidence of a striking reverse IFN signature. Together with poor expression and responsiveness of the IFNgamma gene, these results suggest that there may be a relative defect in IFNgamma gene regulation, with autocrine consequences and implications for disease pathogenesis.

Publication Title

Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-gamma dysregulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20307
Biological Similarities Exist between Oligoarticular and Polyarticular Subtypes of JIA Based on Age at Onset
  • organism-icon Homo sapiens
  • sample-icon 149 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective. To identify gene expression differences in peripheral blood from patients with early and late onset juvenile idiopathic arthritis (JIA).

Publication Title

Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis.

Sample Metadata Fields

Sex, Specimen part, Race

View Samples
accession-icon SRP119303
Endothelial Transcriptome Remodeling in a Mouse Model of Chronic Hypertension
  • organism-icon Mus musculus
  • sample-icon 104 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Aims: Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on vasculature-lining endothelial cells that are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension using the spontaneous hypertension mouse model BPH/2J. Methods and results: Verification of defective endothelial function in the BPH/2J hypertensive mouse strain was followed by acute isolation of cardiac endothelial cells and transcriptional profiling using RNA sequencing. Gene profiles from normotensive BPN/3J mice were compared to hypertensive animals. We observed over 3000 transcriptional differences between groups including pathways consistent with the cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes also differ between juvenile pre-hypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension-related. We also show that blood pressure normalization with amlodipine resulted in a subset of genes reversing their expression pattern, supporting the hypertension-dependency of altered gene expression. Yet, other transcripts were recalcitrant to therapeutic intervention illuminating the possibility that hypertension may irreversibly alter some endothelial transcriptional patterns. Conclusions: Hypertension has a profound effect on both function and transcription of endothelial cells, the latter of which was only partially restored with normalization of blood pressure. This study represents one of the first to quantify how endothelial cells are reprogrammed at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial dysfunction. Overall design: Endothelium from hypertensive mice were acutely extracted at two different ages (4 weeks and 22 weeks) and compared to endothelium from 22 week old normotensive mice.

Publication Title

Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon GSE38754
Temporal changes of gene expression in mouse heart, kidney and lung during juvenile growth
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporal changes of gene expression from 1-wk- to 4-wk and 8-wk-old mouse in heart, kidney and lung. Mammalian somatic growth is rapid in early postnatal life but then slows and eventually ceases in multiple tissues. We hypothesized that there exists a postnatal gene expression program that is common to multiple tissues and is responsible for this coordinate growth deceleration. Consistent with this hypothesis, microarray analysis identified >1600 genes that were regulated with age coordinately in kidney, lung, and heart of juvenile mice, including many genes that regulate proliferation. As examples, we focused on three growth-promoting genes, Igf2, Mest, and Peg3, that were markedly downregulated with age. We conclude that there exists an extensive genetic program occurring during postnatal life. Many of the involved genes are regulated coordinately in multiple organs, including many genes that regulate cell proliferation. At least some of these are themselves apparently regulated by growth, suggesting that, in the embryo, a gene expression pattern is established that allows for rapid somatic growth of multiple tissues but then, during postnatal life, this growth leads to negative-feedback changes in gene expression that in turn slow and eventually halt somatic growth, thus imposing a fundamental limit on adult body size.

Publication Title

An extensive genetic program occurring during postnatal growth in multiple tissues.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact