refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1395 results
Sort by

Filters

Technology

Platform

accession-icon GSE139871
Infection of monocytes from tuberculosis patients with two virulent clinical isolates of Mycobacterium tuberculosis induces alterations in myeloid effector functions.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung where they participate in the contention of infection. Alternatively, inflammatory monocytes may help in prolonging inflammation or serve as niches for Mtb infection. Also, monocyte response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, using microarrays we have examined the global mRNA profiles of circulating human monocytes from healthy individuals and patients with active tuberculosis (TB).

Publication Title

Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of <i>Mycobacterium tuberculosis</i> Induces Alterations in Myeloid Effector Functions.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP148856
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.

Publication Title

Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP170422
RNA-seq analysis asociated with the infection of bovine papillomavirus
  • organism-icon Bos taurus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Bovine papillomavirus (BPV) is the causative agent of papillomatosis in cattle. The disease causes cutaneous and mucosal lesions that can be minimized or lead to the appearance of malignant tumors. This study aims to identify possible molecular mechanisms that are behind the pathological processes associated with bovine papillomatosis through the identification of genes related to the development of the lesions. For this, next-generation RNA sequencing was used to assess differentially expressed genes in infected by BPV and non-infected bovines. Three animals with papillomatosis lesion and three without papillomatosis lesion were studied. The Galaxy platform was used to analyze the data generated by the sequencing. The Illumina output files were converted to FASTQ format. Quality evaluation was performed using FastQC and the sequence quality cut was performed using Trimmomatic. TopHat and Bowtie were used to map and align the reads with the reference genome. The abundance of the expressed genes was verified using Cuffilinks. Cuffdiff was used for differential expression analysis. Functional annotation of the differentially expressed genes was performed using Gene Ontology (GO) databases. RNA-sequencing generated a total of 121,722,238 of reads. In the gene expression analysis, a total of 13,421 genes expressed were identified and of these 1343 were differentially expressed. The functional annotation of differentially significant genes showed that many genes presented functions or they were related to metabolic pathways associated with the progression of papillomatosis lesions and cancer development in cattle. Although more studies are needed, this is the first study that focused on a large-scale evaluation of gene expression associated with the BPV infection, which is important to identify possible mechanisms regulated by the host genes that are necessary the development of the lesion Overall design: Analysis of three BPV infected and three BPV non-infected samples

Publication Title

Comparative transcriptomic analysis of bovine papillomatosis.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE19877
Effects of dietary obesity in fathers on gene expression of islets in the female offspring
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed -cell dysfunction in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet was observed to alter gene expression of pancreatic islet genes in adult female offspring (P < 0.001); affected functional clusters includes calcium ion binding, insulin, apoptosis, Wnt and cell cycle organ/system development. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.

Publication Title

Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE35338
Expression data from reactive astrocytes acutely purified from young adult mouse brains
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two different mouse injury models, ischemic stroke and neuroinflammation.

Publication Title

Genomic analysis of reactive astrogliosis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE7688
Genome-wide mapping and analysis of active promoters in mouse ES cells and adult organs
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The analysis of several mammalian genomes has revealed between 20,000 to 30,000 genes in each genome, a number that may seem hard to reconcile with the large number of cell types and complex functions of these organisms. The solution to this paradox partly lies in the large array of transcripts that each gene can potentially generate through usage of alternative promoters and the variable levels of transcripts that each gene produces in different tissues and cell types. Thus, in order to understand the mechanisms that control diverse patterns of gene expression in mammals, it is necessary to accurately define the active promoters and monitor their cell or tissue-dependent activity. Previous high throughput strategies for assaying tissue-specific gene expression have primarily relied on measurements of steady-state transcript levels by microarrays or tag sequencing. Here, we employ a new experimental strategy to identify and characterize tissue specific promoters by integrating genome-wide maps of RNA polymerase II (Pol II) binding, chromatin modifications and gene expression profiles. We applied this strategy to mouse embryonic stem cells (mES), and adult brain, heart, kidney, and liver. Our results delineated 24,363 Pol II binding sites throughout the genome, 91% of which correspond to 5 end annotation based on known transcripts and cap-analysis of gene expression (CAGE) and can be regarded as promoters. A majority of these experimentally defined promoters are active in all tissues, while only 4,396 can be characterized as tissue-specific using a quantitative measure of Pol II occupancy. In general, Pol II occupancy at these tissue specific promoters is correlated with the presence of active histone modification marks. However, a set of mES- specific promoters display persistent levels of H3K4me3 in non-ES tissues despite undetectable Pol II binding and transcript. Broadly, our results expand the knowledge of tissue-specific mammalian genes and provide a resource for understanding the transcriptional programs in mammalian development and differentiation.

Publication Title

Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45747
Weight loss after gastric bypass surgery in human obesity induces promoter methylation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Illumina Genome Analyzer IIx

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Weight loss after gastric bypass surgery in human obesity remodels promoter methylation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45745
Gene expression profiling in skeletal muscle before and after GBP surgery
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Affymetrix Human Genome U219 Array (hgu219)

Description

Profiling of gene expression in Vastus Lateralis from female patients before and after GBP surgery and from lean Control

Publication Title

Weight loss after gastric bypass surgery in human obesity remodels promoter methylation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40421
Generation of oligodendroglial cells by direct lineage conversion
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We report the generation of induced oligodendrocyte precursor cells (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to convert mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures that resemble OPCs.

Publication Title

Generation of oligodendroglial cells by direct lineage conversion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39022
Expression data from spleen and lymph node conventional CD11c+ Dendritic cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Spleen and lymph node dendritic cells have a differential capacity do induce and retain iTreg cells. Therefore we performed a comparative analysis of the dendritic cells derived from these two compartments to identify the responsible genes

Publication Title

Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact