refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 178 results
Sort by

Filters

Technology

Platform

accession-icon GSE49383
Gene expression data from mouse HDAC4 KO pups, postnatal day 3
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue-specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3.

Publication Title

HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40102
Comparing Control and Schizophrenic hiPSC-derived NPCs
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the age of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia (SCZD) generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SCZD brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SCZD might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SCZD patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SCZD hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes, reduced WNT signaling and aberrant cellular migration.

Publication Title

Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE38237
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE38218
Gene expression data from cortex of 9w old WT, R6/2, HDAC4het and R6/2::HDAC4het mice
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE38219
Gene expression data from cortex of 15w old WT, R6/2, HDAC4het and R6/2::HDAC4het mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP092552
Transcriptional profiling of cortex and striatal tissue following chronic dosing of PDE10A inhibitor PF-02545920 in a Q175 homozygous knock-in mouse model of Huntington’s disease
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Huntington’s disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition were required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. Overall design: Transcriptional profiling of cortex and striatal tissue following chronic dosing of either vehicle or the  PDE10A inhibitor PF-02545920 (0.32, 1 and 3.2 mg/kg po qd) in the Q175 homozygous knock-in mouse model of Huntington’s disease (dosing from 5-weeks to 9 months of age).

Publication Title

Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE17824
Transcriptional profiling after inhibition of cellulose synthesis by TA and IXB in Arabidopsis thaliana suspension cells
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptional profiling after inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells

Publication Title

Transcriptional profiling in response to inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38027
Gene expression analysis of THP-1 cells co-cultured with platelet-like particles
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Abstract. The role of platelets in hemostasis and thrombosis is clearly established; however, the mechanisms by which platelets mediate inflammatory and immune pathways are less well understood. Platelets interact and modulate the function of blood and vascular cells by releasing bioactive molecules. Although the platelet is anucleate, it contains transcripts that may mirror disease. Platelet mRNA is only associated with low-level protein translation, however, platelets have a unique membrane structure allowing for the passage of small molecules, leading to the possibility that its cytoplasmic RNA may be passed to nucleated cells. To examine this question, platelet-like particles with labeled RNA were co-cultured with vascular cells. Co-culture of platelet-like particles with activated THP-1, monocytic, and endothelial cells led to visual and functional RNA transfer. Post-transfer microarray gene expression analysis of THP-1 cells showed an increase in HBG1/HBG2 and HBA1/HBA2 expression which was directly related to the transfer. Infusion of wild-type platelets into a TLR2 deficient mouse model established in vivo confirmation of select platelet RNA transfer to leukocytes. By specifically transferring green fluorescent protein, it was also observed that external RNA was functional in the recipient cells. The observation that platelets possess the capacity to transfer cytosolic RNA suggests a new function for platelets in the regulation of vascular homeostasis.

Publication Title

Platelets and platelet-like particles mediate intercellular RNA transfer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE115887
Expression data from Drd2+ cells of mouse mPFC
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The heterogeneity of cortical dopamine D2 receptor expressing cells is not well characterized

Publication Title

High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP067088
Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex.
  • organism-icon Rattus norvegicus
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

This study focused on transcription in the medial PFC (mPFC) as a function of age and cognition. Young and aged F344 rats were characterized on tasks, attentional set shift and spatial memory, which depend on the mPFC and hippocampus, respectively. Differences in transcription associated with age and cognitive function were examined using RNA sequencing to construct transcriptomic profiles for the mPFC, white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging associated with increased expression of immune and defense response genes and a decline in synaptic and neural activity genes. Importantly, we provide evidence for region specific transcription related to behavior. In particular, expression of transcriptional regulators and neural activity-related immediate-early genes (IEGs) are increased in the mPFC of aged animals that exhibit delayed set shift behavior; relative to age-matched animals that exhibit set shift behavior similar to younger animals. Overall design: The study contains 11 young and 20 aged rats for the mPFC and CA1 samples, which were used to investigate expression patterns associated with aging and behavior. White matter samples were used to investigate an age-related effect with 8 young and 9 aged rats.

Publication Title

Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact