refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 114 results
Sort by

Filters

Technology

Platform

accession-icon GSE13946
Comparison of gamma delta intraepithelial lymphocytes from DSS-treated and untreated colon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

gamma delta intraepithelial lymphocytes were isolated from the colons of DSS-treated and untreated mice. Total RNAs were isolated and compared by Affymetrix DNA microarray.

Publication Title

Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58969
Effect of fbw7 deletion in mouse pancreatic ducts
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The adult pancreas is capable of limited regeneration after injury, but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into -cells. The induced -cells resemble islet -cells in morphology and histology, express genes essential for -cell function, and release insulin upon glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type.

Publication Title

Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ, and β cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE5156
Impact of intestinal colonization on Paneth cell gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study delineated how small intestinal resident microflora impact gene expression in Paneth cells.

Publication Title

Symbiotic bacteria direct expression of an intestinal bactericidal lectin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP151113
Osterix functions downstream of anti-Mu¨llerian hormone signaling to regulate Mu¨llerian duct regression
  • organism-icon Mus musculus
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of this study was to identify potential AMH-induced genes and regulatory networks controlling regression by RNA-Seq transcriptome analysis of differences in Müllerian Duct mesenchyme between males (AMH signaling on) and females (AMH signaling off) in purified fetal Müllerian Duct mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified Osterix (Osx)/Sp7, a key transcriptional regulator of osteoblast differentiation and bone formation, as a novel downstream effector of AMH signaling during MD regression. Overall design: Müllerian Duct mesenchymal cells mRNA profiles from 2-7 embryonic day 14.5 embryos were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.

Publication Title

<i>Osterix</i> functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7257
Laser capture-microarray analysis of Lim1 mutant kidney development.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Lim1 gene has essential functions during several stages of kidney development. In particular, a tissue specific knockout in the early metanephric mesenchyme results in the formation of the earliest nephron precursor, the renal vesicle, but failure of this structure to progress to the next stage, the comma shaped body. To better understand the molecular nature of this developmental arrest we used a laser capture microdissection-microarray strategy to examine the perturbed gene expression pattern of the mutant renal vesicles. Among the genes found differently expressed were Chrdl2, an inhibitor of BMP signaling, the pro-apoptotic factor Bmf, as well as myob5, an atypical myosin which modulates chemokine and transferring signaling, and pdgfr1, which is important in epithelial folding. Of particular interest, the microarray data indicated that the Dkk1 gene, which encodes an inhibitor of Wnt signaling, was downregulated nine fold in mutants. This was confirmed by in situ hybridizations. It is interesting to note that Lim1 and Dkk1 mutant mice have striking similarities in phenotype. These results suggest that the Dkk1 gene might be a key downstream effector of Lim1 function.

Publication Title

Laser capture-microarray analysis of Lim1 mutant kidney development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4230
Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: Lim1 is a homeobox gene that is essential for nephrogenesis. During metanephric kidney development, Lim1 is expressed in the nephric duct, ureteric buds, and the induced metanephric mesenchyme. Conditional ablation of Lim1 in the metanephric mesenchyme blocks the formation of nephrons at the nephric vesicle stage, leading to the production of small, non-functional kidneys that lack nephrons.

Publication Title

Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36687
Microarray of Rnaseh2b KOF and RnaseH2b wild type fetal liver
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fetal liver of E14.5 RNaseh2b KOF and Rnaseh2b wild type embryos was isolated, RNA was extracted and microarray analysis using Affymetrix Mouse 430 2.0 gene chip was performed

Publication Title

Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49063
Differential Kinetics of Antigen Dependency of CD4+ and CD8+ T Cells
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class IIrestricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.

Publication Title

Differential kinetics of antigen dependency of CD4+ and CD8+ T cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE11386
Gene expression in murine memory versus naive B cells (1st generation and 2nd generation screens)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Memory B cells play essential roles in the maintenance of long-term immunity and may be important in the pathogenesis of autoimmune disease, but how these cells are distinguished from their nave precursors is poorly understood. To address this, it would be important to understand how gene expression differs between memory and naive B cells in order to elucidate memory-specific functions. Using model systems that help overcome the lack of murine memory-specific markers and the low frequency of antigen-specific memory and nave cells, we undertook a global comparison of gene expression between memory B cells and their naive precursors.

Publication Title

Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47430
Expression data from murine Hemophagocytes (HPCs) versus resting splenic macrophages
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hemophagocytes are activated macrophages seen morphologically to have engulfed other hematopoietic cells. Their function is unknown. Attempts to induce these cells in vitro or purify them ex vivo have been unsuccessful.

Publication Title

Brief report: alternative activation of laser-captured murine hemophagocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact