refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 111 results
Sort by

Filters

Technology

Platform

accession-icon GSE44110
Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Kv10.1 (Eag1), member of the Kv10 family of voltage-gated potassium channels, is preferentially expressed in adult brain. The aim of the present study was to unravel the functional role of Kv10.1 in the brain by generating knockout mice, where the voltage sensor and pore region of Kv10.1 was removed to render non-functional proteins through deletion of exon 7 of the KCNH1 gene using the 3 Lox P strategy. Kv10.1-deficient mice show no obvious alterations during embryogenesis and develop normally to adulthood; cortex, hippocampus and cerebellum appear anatomically normal. Other tests, including general health screen, sensorimotor functioning and gating, anxiety, social behaviour, learning and memory did not show any functional aberrations in Kv10.1 null mice. Kv10.1 null mice display mild hyperactivity and longer-lasting haloperidol-induced catalepsy, but there was no difference between genotypes in amphetamine sensitisation and withdrawal, reactivity to apomorphine and haloperidol in the prepulse inhibition tests or to antidepressants in the haloperidol-induced catalepsy. Furthermore, electrical properties of Kv10.1 in cerebellar Purkinje cells did not show any difference between genotypes. Bearing in mind that Kv10.1 is overexpressed in over 70% of all human tumours and that its inhibition leads to a reduced tumour cell proliferation, the fact that deletion of Kv10.1 does not show a marked phenotype is a prerequisite for utilising Kv10.1 blocking and/or reduction techniques, such as siRNA, to treat cancer.

Publication Title

Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8632
RNA binding activity of the recessive parkinsonism protein DJ-1
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Parkinson disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanism(s) involved in the degeneration of specific neuronal groups remains unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unclear, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here we show that DJ-1 associates with specific RNA targets in cells and in the brain including mitochondrial genes, genes involved in glutathione metabolism and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations in vitro and that there is some RNA sequence specificity to the association. Oxidative stress causes DJ-1 to dissociate from RNA. Using in vitro and in vivo models of mild oxidative stress, we show that DJ-1 normally suppresses translation in normal circumstances but allows translation after oxidative stress. We tested the hypothesis that these specific RNA targets are responsible for sensitivity to stress by exposing knockout flies to glutathione synthesis inhibitors and saw the predicted increased sensitivity in vivo. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds and regulates specific groups of RNA targets in an oxidationdependent manner. Furthermore, these results suggest how a small protein might both be an upstream regulator of processes important in parkinsonism and be a modifier of cancer-related processes.

Publication Title

RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24875
The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression.

Publication Title

The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP128057
GMUCT sequencing of 4 week old leaves in Arabidopsis ABI3:MTA plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In order to gain insight into relative stability of transcripts in plants that lacked m6A, we performed global mapping of uncapped and cleaved transcripts Overall design: 2 replicates of GMUCT in Arabidopsis thaliana ecotype Col-0 ABI3:MTA (mta) plants. genome-wide mapping of uncapped and cleaved transcripts (GMUCT)

Publication Title

N<sup>6</sup>-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE56866
Transcriptomes of the Cochlear Inner and Outer Hair Cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The transcriptome is the complete set of all RNA transcripts produced by the genome in a cell and reflects the genes that are being actively expressed. Transcriptome analysis is essential for understanding the genetic mechanism controlling the phenotype of a cell.

Publication Title

Characterization of transcriptomes of cochlear inner and outer hair cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25533
A chromatin-modifying function of JNK during embryonic stem cell differentiation
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A chromatin-modifying function of JNK during stem cell differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE25529
Expression data from DMSO and SP600125 treated neurons
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression profiling of from DMSO and SP600125 treated glutamatergic neurons reveals JNK target genes that are transcriptionally regulated by JNK signaling.

Publication Title

A chromatin-modifying function of JNK during stem cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP095338
Transcriptomic Analysis of Adult Zebrafish Inner Ear Hair Cells
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

To understand the basic biological property of hair cells (HCs) from lower vertebrates, we examined transcriptomes of adult zebrafish HCs. GFP-labeled HCs were isolated from the utricle, saccule, and lagena, the three inner-ear sensory epithelia of a pou4f3 promoter-driven GAP-GFP line of transgenic zebrafish. 2,000 HCs and 2,000 non-sensory cells from the inner ear were individually collected by suction pipet technique. RNA sequencing was performed and the resulting sequences were mapped, analyzed, and compared. Comparisons allow us to identify enriched genes in HCs, which may underlie HC specialization. Overall design: Examination of transcriptomes of adult zebrafish inner ear hair cells and surrounding cells individually collected and sorted using pou4f3 promoter-driven GFP marking hair cells.

Publication Title

RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70049
Transcriptional profiling of setb morphants
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Zebrafish Gene 1.0 ST Array (zebgene10st)

Description

We have characterised the zebrafish ortholog, setb, and investigated its role in embryogenesis. Phylogenetic analysis showed that zebrafish Setb has an amino acid sequence identity of approximately 96% with the mammalian orthologs. Whole mount immunofluorescence analysis revealed that Setb is expressed mainly in the eye, the lateral line neuromasts and the olfactory pit. Knockdown of setb using antisense morpholino oligonucleotides resulted in increased apoptosis, reduced cell proliferation and severe morphological defects. The morphant phenotypes were partially rescued when setb MO1 was co-injected with human set mRNA. In vivo labelling of hair cells in the lateral line of setb morphants with the vital fluorescent dye FM1-43 showed a significant decreased number of functional neuromasts. Gene expression analysis of setb morphants, employing DNA microarrays revealed a role of Setb in neurogenesis and the mechanosensory lateral line system.

Publication Title

The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and insights into their physiological roles during development.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP039511
Fed State Prior to Hemorrhagic Shock and Polytrauma in a Porcine Model Results in Altered Liver Transcriptomic Response
  • organism-icon Sus scrofa
  • sample-icon 90 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced liver mRNA from 23 individual pigs (5 prefed and 18 fasted) taken at 4 separate time points to evaluate the change in gene expression over the course of hemorrhagic shock and resuscitation in response to a carbohydrate prefed state. Overall design: Examination of mRNA levels in liver biopsies from pigs at 4 timepoints throughout hemorrhagic shock and resuscitation

Publication Title

Fed state prior to hemorrhagic shock and polytrauma in a porcine model results in altered liver transcriptomic response.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact