refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon SRP113442
CBFb-SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We recently reported the discovery of a small molecule inhibitor, AI-10-49 which can specially inhibit the protein-protein interaction between RUNX1 tumor suppressor and CBFß-SMMHC oncogene. We also demonstrated that AI-10-49 can re-establish the RUNX1 transcriptional program in inv(16) cells and can extend the survival of inv(16) leukemic mice. To identify the transcriptional changes associated with AI-10-49, we performed RNA-seq analysis in ME-1 cells [human inv(16) leukemia cell line] treated with AI-10-49. Overall design: ME-1 cells were treated with DMSO/ AI-10-49 (1uM) for six hours, followed by RNA isolation. RNA libraries were sequenced using 90bp paired end reads on an Illumina HiSeqTM 2000.Three independent experiments were conducted for DMSO as well as AI-10-49 treatments.

Publication Title

CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE45854
Expression profiling data of RD and C2C12 cells ectopically expressing DUX4
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptomic changes induced by DUX4 expression were compared between human and mouse cell lines of muscle lineage.

Publication Title

DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP046272
OGG1-initiated DNA base excision repair is linked to inflammatory gene expression and lung inflammation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Purpose: The aim of this study is to evaluate the global gene expression induced by OGG1-BER product 8-oxoG in mouse airways. Methods: RNA extracted from individual mouse lungs (experimental group: n=5) were pooled and a total 1 µg RNA was used for Next-Generation Sequencing (NGS) analyses on an Illumina HiSeq 1000 sequencing system. Sequence analysis were performed in duplicate. First- and second-strand synthesis, adapter ligation and amplification of the library were performed using the Illumina TruSeq Sample Preparation Kit as recommended by the manufacturer (Illumina). Library quality was evaluated by using an Agilent DNA-1000 chip on an Agilent 2100 Bioanalyzer. Library DNA templates were quantitated by qPCR using known reference starndards. Cluster formation of the library of DNA templates was performed using the TruSeq PE Cluster Kit v3 (Illumina) and the Illumina cBot workstation. Paired-end, 50-base sequencing was performed with a TruSeq SBS kit v3 (Illumina) on the Illumina HiSeq 1000 by protocols defined by the manufacturer. Base call conversion to sequence reads was performed using CASAVA-1.8.2. Sequence data were analyzed with the Bowtie2, Tophat2 and GFOLD programs. Processed data are presented as reads per kilobase transcript per million (RPKM), normalized to the experimental control (RNA from saline-challenged lungs) and reported as fold change (test/control). Results: We mapped an average of 24.76 million sequence reads per sample and identified 23,337 transcripts in total RNA extracted from lungs of Balb/cJ mice as described in Methods. Approximately 10% of the transcripts showed differential expression between the saline-challenged control and 8-oxoguanine-challeged mouse lungs, with a fold change =3.0. We validated the expression changes of 7 selected pro-inflammatory cytokines and chemokines of interest for our studies by qRT-PCR. Hierarchical clustering followed by Protein ANalysis THrough Evolutionary Relationships database (PANTHER) analysis of differentially expressed genes. Results showed overrepresentation of various biological functions (GO terms) including immune system process (GO:0002376; p=5.24e-12) among others. Pathway analysis (PANTHER) indicated that the most overrepresented pathway was inflammation mediated by chemokine and cytokine (P00031, p=<0.01). In addition to gene expression analysis, we confirmed OGG1•8-oxoG-dependent RAS activation in lungs by active RAS pull-down assays, airways neutrophil accumulation by bronchoalveolar lavage fluid (BALF) differential cell counts and airway inflammation by histological examination (H&E staining) of lung sections. Conclusions: This is the first study at the whole-transcriptome level to show induction of innate immune response gene expression in mouse lungs after exposure to OGG1-BER product 8-oxoG. Overall design: Balb/cJ mice (5 per group) were intranasally challenged with 8-oxoguanine (1 µM, 60 µl) for 30, 60 and 120 min. Control group mice were intranasally challenged with saline (60 µl). RNA from individual mice whithin the same group was pooled and subjected to deep-sequencing analysis in duplicate using NGS on an Illumina HiSeq 1000 sequencing system. After alignment and processing, the resulting RPKM from treatment groups (8-oxoG-challenged) were normalized to the control group (saline-challenged).

Publication Title

The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052526
8-Oxoguanine DNA glycosylase-1 DNA repair-signaling induces gene expression associated to airway remodeling
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Purpose: The aim of this study is to test whether global gene expression induced by multiple challenges with OGG1-BER product 8-oxoG in mouse airways is linked to airway remodeling. Methods: RNAs extracted from individual mouse lungs (experimental group: n=5) were pooled and a total 1 µg RNA was used for Next-Generation Sequencing (NGS) analyses on an Illumina HiSeq 1000 sequencing system. Sequence analyses were performed in duplicate. First- and second-strand synthesis, adapter ligation and amplification of the library were performed using the Illumina TruSeq Sample Preparation Kit as recommended by the manufacturer (Illumina). Library quailty was evaluated by using an Agilent DNA-1000 chip on an Agilent 2100 Bioanalyzer. Library DNA templates were quantitated by qPCR using known reference standards. Cluster formation of the library of DNA templates was performed using the TruSeq PE Cluster Kit v3 (Illumina) and the Illumina cBot workstation. Paired-end, 50-base sequencing was performed with a TruSeq SBS kit v3 (Illumina) on the Illumina HiSeq 1000 by protocols defined by the manufacturer. Base call conversion to sequence reads was performed using CASAVA-1.8.2. Sequence data were analyzed with the Bowtie2, Tophat2 and GFOLD programs. Processed data are presented as reads per kilobase transcript per million (RPKM), normalized to the experimental control (RNA from saline challenged lungs) and reported as fold change (test/control). Results: We mapped an average of 31.41 million sequence reads per sample and identified 23,337 transcripts in total RNA extracted from lungs of Balb/cJ mice as described in Methods. Approximately 14% of the transcripts showed differential expression between the saline-challenged control and 8-oxoguanine-challeged mouse lungs, with a fold change =3.0. We validated the expression changes of 18 selected EMT-related genes of interest for our studies by qRT-PCR. Hierarchical clustering followed by Protein ANalysis THrough Evolutionary Relationships database (PANTHER) analysis of differentially expressed genes was done using GENE-E online software from Broad Institute (http://www.broadinstitute.org/cancer/software/GENE-E/). Results from PANTHER analysis of upregulated transcripts (fold change =3.0) showed overrepresentation of various biological functions (GO terms) including developmental process (GO:0032502, P=4.58E-33), system development (GO:0048731, P=9.16E-33), cellular process (GO:0009987, P= 5.52E-31), cell adhesion (GO:0007155, P= 8.63E-28) among others. Pathway analysis (PANTHER) indicated that the most overrepresented pathways were: cadherin signaling (P00012, P=6.62E-07), wnt signaling (P00057, P= 5.81E-06), integrin signaling (P00034, P= 1.09E-05) among others. In addition to gene expression analysis, we confirmed airway remodeling by histological examination (Hematoxylin and Eosin, Masson's trichrome staining) of lung sections at seven days from the last challenge (day 11). Conclusions: This is the first study showing a link between gene expression at whole-transcriptome level induced by chronic OGG1-BER (mimicked by multiple challenges with 8-oxoG) and airway remodeling, supported by histological structural changes in lungs. Overall design: Balb/cJ mice (5 per group) were intranasally challenged with 8-oxoguanine (1 µM, 60 µl) for three times at days 0, 2 and 4. Control group mice were intranasally challenged with saline (60 µl). At 30, 60 and 120 min after the third challenge (day 4), mice were sacrificed and lungs were processed for RNA extraction. RNAs from individual mice within the same group were pooled and subjected to deep-sequencing analysis in duplicate using NSG on an Illumina HiSeq 1000 sequencing system. After alignment and processing, the resulting RPKM from treatment groups (8-oxoG-challenged) were normalized to control group (saline-challenged).

Publication Title

The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110626
RNA-seq analyses of kdm5[A512P] and enzymatically inactive kdm5[JmjC*] in adult heads
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to generate a Drosophila model of intellectual disability caused by mutations in kdm5. RNA-seq was used to define the transcriptional defects of a mutation in Drosophila that is analogous to a human intellectual disability-associated allele, kdm5[A512p]. These data revealed a total of 1609 dysregulated genes, 778 of which were upregulated and 831 were downregulated. To determine whether these transcriptional defects were due to the loss of KDM5-induced histone demethylation, we also carried out RNA-seq from a enzymatic inactive strain, kdm5[Jmjc*]. These data revealed a striking similarity between the two datasets and suggest that the primary defect of KDM5[A512P] is loss of histone demethylase activity. Overall design: 3-5 day old adult heads from wildtype, kdm5[A512P] and kdm5[JmjC*] were used to generate RNA that was subsequently subjected to deep sequencing.

Publication Title

A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE41150
Genes up and down regulated in LNCaP cells overexpressing MED1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To identify MED1 target genes involved in prostate tumorigenesis.

Publication Title

ERK and AKT signaling drive MED1 overexpression in prostate cancer in association with elevated proliferation and tumorigenicity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13640
Effect of miRNA biogenesis factors on mRNA levels
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Posttranscriptional crossregulation between Drosha and DGCR8.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13639
Drosha or DGCR8 knockdown effects on mRNA levels in HeLa
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Anaysis of mRNA changes in HeLa cells following knockdown of Drosha or DGCR8. Drosha is a nuclear RNase III that carries out microRNA (miRNA) processing by cleaving primary microRNA transcript (pri-miRNA). DGCR8 is an essential co-factor of Drosha.

Publication Title

Posttranscriptional crossregulation between Drosha and DGCR8.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact