refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE43524
Microarray analysis of wildtype, Klf8gt/gt, Klf3-/- and Klf3-/- Klf8gt/gt TER119+ E13.5 fetal liver cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this experiment was to investigate the regulation of gene expression by KLF3 and KLF8 in fetal erythroid cells by analyzing single and double mutant mouse models.

Publication Title

Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35592
Microarray analysis of wildtype and Klf3 KO E14.5 fetal liver cells (TER119- and TER119+)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this experiment was to investigate the role of KLF3 in regulating gene expression at different stages throughout the erythroid maturation process.

Publication Title

The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35594
Microarray analysis of wildtype and Klf1-/- E13.5 fetal liver
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The aim of this experiment was to investigate the role of KLF1 in the fetal liver

Publication Title

The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP148854
Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets led to hyperphagia, obesity and reduced lifespan. These effects were not due to elevated BCAA per se or hepatic mTOR activation, but rather the shift in balance between dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and was linked to central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averted the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes were not due to intrinsic toxicity; rather, to hyperphagia driven by AA imbalance. Overall design: 3 animals per sex per diet were used. Mice were fed one of four diets (all 19% total protein, 63% carbohydrate, 18% fat, total energy density 14 kJ/g) varying in BCAA content (BCAA200: twice BCAA content of control diet AIN93G; BCAA100: standard content of BCAAs; and BCAA50 and BCAA20: containing one half and one fifth of standard content of BCAAs), and either euthanized at 15 months of age or maintained for determination of lifespan.

Publication Title

Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE69079
Expression data of sleeping, waking, and sleep deprived adult heterozygous aldh1l1 eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE48369
Expression data of sleeping, waking, and sleep deprived in adult heterozygous Cnp eGFP-L10a mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.

Publication Title

Effects of sleep and wake on oligodendrocytes and their precursors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35206
Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The efficacy and exceptionally good tolerance of estrogen blockade in the treatment of breast cancer is well recognized but novel agents are required, especially to take advantage of the multiple consecutive responses obtained in breast cancer progressing following previous hormone therapy, thus delaying the use of cytotoxic chemotherapy with its usually serious side effects. Acolbifene (ACOL) is a novel and unique antiestrogen completely free of estrogen-like activity in both the mammary gland and uterus while preventing bone loss. From the preclinical and clinical data so-far available, this new antiestrogen represents a unique opportunity for a highly potent and specific blockade of estrogen action in the mammary gland and uterus while exerting estrogen-like beneficial effects in other tissues (selective estrogen receptor modulator or SERM activity). In order to better understand the specificity of action of acolbifene, we have used Affymetrix GeneChips containing 45,000 probe sets to analyze 34,000 genes to determine the specificity of this compound compared to the pure antiestrogen fulvestrant, as well as the mixed antagonists/agonists tamoxifen and raloxifene to block the effect of estradiol (E2) and to induce effects of their own on gene expression in the mouse mammary gland. The genes modulated by E2 were those identified in two separate experiments and validated by quantitative real-time PCR (Q_RT-PCR). Three hours after the single subcutaneous injection of E2 (0.05 ug), the simultaneous administration of acolbifene, fulvestrant, tamoxifen and raloxifene blocked by 98%, 62%, 43% and 92% the number of E2-upregulated genes, respectively. On the other hand, 70%, 10%, 25% and 55% of the genes down-regulated by E2 were blocked by the same compounds. Acolbifene was also the compound which, when used alone, modulated the smallest number of genes also influenced by E2, namely 4%, thus possibly explaining the potent tumoricidal action of this compound in human breast cancer xenografts where 61% of tumors disappeared, thus bringing a new paradigm in the hormonal therapy of breast cancer.

Publication Title

Specific transcriptional response of four blockers of estrogen receptors on estradiol-modulated genes in the mouse mammary gland.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP186927
AmpliSeq transcriptome profiling of human adipose tissue progenitor cell types
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).

Publication Title

Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact