refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE12613
Effect of FoxJ1 on expression of cilia genes
  • organism-icon Xenopus laevis
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Analysis of epithelial explants injected with the intracellular domain of Notch (ICD) to block the formation of multi-ciliate cells, either alone or along with FoxJ1. FoxJ1 misexpression leads to the induction fo ectopic cilia in Xenopus laevis epithelia. Results show which genes are affected by FoxJ1 during the induction of ectopic cilia.

Publication Title

The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39842
Hypoxia induces myocardial regeneration in zebrafish
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Conditional expression of dominant-negative HIF1a in zebrafish cardiomyocytes severely inhibits heart regeneration. To understand more about the mechanism, we performed microarray analysis of wildtype regenerating zebrafish and dnHIF1a regenerating zebrafish to determine which genes are regulated by hypoxia/HIF1a.

Publication Title

Hypoxia induces myocardial regeneration in zebrafish.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE9296
Gene expression profiling of CD45+/Sca1+ cells isolated from the bone marrow and the muscle
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The BM-derived CD45+/Sca1+ cells are haematopoietic stem/progenitor cells that have the ability to circulate and migrate and engraft to the muscle tissue, and therefore they are of particular interest. Notably, these cells retain their haematopoietic potential, as revealed both by in vitro and in vivo assays; but they also acquire myogenic potential, as shown by their ability to participate in muscle regeneration. Whether, this latter remarkable ability is the result of the reprogramming of the BM-CD45+/Sca1+ cells and the activation of a myogenic molecular program within these cells, remains controversial. This study aims to clarify this aspect of the process, investigating the role of the muscle microenviroment and key myogenic transcription factors.

Publication Title

Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17993
Zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Ischemic cardiopathy is the leading cause of death in the world, for which efficient regenerative therapy is not currently available. In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue featuring collagen deposition and tissue remodelling with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Due to the lack of genetic lineage tracing evidence, it is not yet clear if new cardiomyocytes arise from existing contractile cells or from an uncharacterised set of progenitors cells. Nonetheless, several genes and molecules have been shown to participate in this process, some of them being cardiomyocyte mitogens in vitro. Though questions as what are the early signals that drive the regenerative response and what is the relative role of each cardiac cell in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts, and identified additional genes the expression of which is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative RT-PCR. For a subset of these genes, their expression pattern was analyzed by in situ hybridization and shown to be upregulated in the regenerating area of the heart. The specific role of these new transcripts during zebrafish heart regeneration was further investigated ex vivo using primary cultures of zebrafish cardiomyocytes and/or epicardial cells. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.

Publication Title

Transcriptomics approach to investigate zebrafish heart regeneration.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE29397
Waves of early transcriptional activation and pluripotency program initiation along human preimplantation development.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The events regulating human preimplantation development are still largely unknown, due to scarcity of material, ethical and legal limitations, and lack of reliable techniques to faithfully amplify the transcriptome of a single cell. Nonetheless, knowledge in human embryology is gathering renewed interest due to its close relationship with both stem cell biology and epigenetic reprogramming to pluripotency, and their centrality to regenerative medicine. Using carefully timed genome-wide transcript analyses on single oocytes and embryos, the analysis of the data allowed us to uncover a series of successive waves of embryonic transcriptional initiation which start as early as the 2 cell stage. In addition, we identified hierarchical activation of genes involved in the regulation of pluripotency. Finally, we developed HumER, a free database of human preimplantation human development gene expression to serve the scientific community. Importantly, our work links early transcription in the human embryo with the correct execution of the pluripotency program later in development, and paves the way for the identification of factors to improve epigenetic reprogramming.

Publication Title

Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE48915
Expression data from tissues during somatic embryogenesis in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We collected tissues from bent cotyledon stage zygotic embryos, proliferating tissue at day 7 and day 14 induction of somatic embryogenesis and mature somatic emrbyos in a wild type (Col-0) and vtc2 (SALK_146824) insertion.

Publication Title

Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2742
Genomic Strategies Identify the Antitumor Agent Apratoxin A as a Potent Antagonist of FGF Signaling and STAT3 Activation
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Total RNA was extracted from apratoxin A or vehicle treated HT29 cells using the RNeasy Mini Kit (Qiagen). Probe values from CEL files were condensed to probe sets using Rosetta Resolver software. Resolver ANOVA analysis was then performed between groups.

Publication Title

A functional genomics approach to the mode of action of apratoxin A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37711
Expression analysis in parthenogenetic cells through different potency stages
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Parthenogenetic stem cells were derived from parthenotes, then differentiated to mesenchymal stem cells. These were further reprogrammed to induced pluripotent stem cells, which were finally differentiated to secondary mesenchymal stem cells.

Publication Title

Accumulation of instability in serial differentiation and reprogramming of parthenogenetic human cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE23210
Expression data in single and double knockouts of AtNHX5 and AtNHX6 in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We generated single and double knockouts of AtNHX5 and AtNHX6 in order to invesigate possible functions in Arabidopsis. nhx5/nhx6 exhibited severe growth retardation related to cell size and proliferation, as well as endosomal trafficking perutrbations. The results implicate endosomal NHX antiporters in novel cellular functions. In order to investigate further the possible functions of AtNHX5 and AtNHX6, we compared the transcrptional profiles of single and double AtNHX5 and AtNHX6 knockouts. We looked for changes in gene expression might help us to elucidate the molecular events associated with the apparent requirement of AtNHX5 and AtNHX6 for normal growth and development.

Publication Title

The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP072698
RNA sequencing for identifying downstream targets of miR25/93
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

we identify several downstream targets that are under control of miR25/93 cluster Overall design: examination of global changes in mRNAs in two different lines

Publication Title

miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact