refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1191 results
Sort by

Filters

Technology

Platform

accession-icon GSE2538
Chitin Oligomer Experiment
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Using the ATH1 Affymetrix microarrays consisting of about 23,000 genes, we examined the response of Arabidopsis seedlings to chito-tetramers, chito-octamers and hydrolyzed chitin after 30 min of treatment.

Publication Title

Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12971
MCF-7 Luciferase, PARP-1, PARG, SIRT1, and macroH2A Knockdown
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Affymetrix expression arrays were used to compare expression patterns upon knockdown of PARP-1, PARG, SIRT1, or macroH2A in comparison to Luciferase control.

Publication Title

Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12952
Expression Analysis Upon PARP-1 or PARG Knockdown in MCF-7 Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins in the nucleus by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs (shRNAs) to stably knockdown PARP-1 or PARG in MCF-7 cells, followed by expression microarray analyses.

Publication Title

Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13577
SIRT1-Dependent Gene Regulation Through Promoter-Directed Recruitment of a Nuclear NAD+ Synthase
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In mammals, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1) constitute a nuclear NAD+ salvage pathway, regulating cellular functions of the NAD+-dependent deacetylase SIRT1. However, little is known about the molecular mechanisms by which NAD+ biosynthesis controls gene transcription in the nucleus. In this study, we show that stable knockdown of NAMPT or NMNAT-1 in MCF-7 breast cancer cells significantly reduced total cellular NAD+ levels. Expression microarray analyses demonstrate that both enzymes have broad and overlapping functions in gene regulation. SIRT1 is a key mediator of NAMPT- and NMNAT-1-dependent gene regulation, and is found at promoters of many of the target genes. Furthermore, SIRT1 deacetylase activity at these promoters is regulated by NAMPT and NMNAT-1. Most significantly, NMNAT-1 interacts with SIRT1 and is recruited to target gene promoters by SIRT1. Our results reveal an unexpected mechanism for the direct control of SIRT1 deacetylase activity at target gene promoters by NMNAT-1. Interactions between NMNAT-1 and SIRT1 at gene promoters may provide a platform for integration of multiple signaling pathways that regulate transcription.

Publication Title

Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13458
Expression analysis upon NMNAT1 knockdown in MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NMNAT1 is a nuclear enzyme in the mammalian NAD+ salvage pathway. Expression microarray analysis was used to study the effect of NMNAT1 knockdown on gene expression in MCF-7 breast cancer cells.

Publication Title

Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13459
Expression analysis upon SIRT1 knockdown in MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SIRT1 is a nuclear NAD+-dependent protein deacetylase. Expression microarray analysis was used to study the effect of SIRT1 knockdown on gene expression in MCF-7 breast cancer cells.

Publication Title

Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13449
Expression analysis upon NAMPT knockdown in MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NAMPT is an enzyme in the mammalian NAD+ salvage pathway. Expression microarray analysis was used to study the effect of NAMPT knockdown on gene expression in MCF-7 breast cancer cells.

Publication Title

Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP149834
Exon Level Machine Learning Analyses Elucidate Novel Candidate miRNA Targets in an Avian Model of Fetal Alcohol Spectrum Disorder
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

An RNA-seq dataset obtained from neural fold-stage chicken (Gallus gallus, strain Special Black) embryos that were exposed to a pharmacologically-relevant alcohol concentration (52 mM for 90 min) or isotonic saline. The cranial headfolds were isolated 6 hours following the initial alcohol exposure. Following RNA isolation, cDNA synthesis, and quality assurance (20), paired-end reads (75 bp) were generated on an Illumina Genome Analyzer IIx (University of Wisconsin Biotechnology Center). Overall design: Paired end runs with 2 replicate ethanol exposed samples (pool of 23 individual neural folds) and 2 saline control samples (pool of 23 individual neural folds).

Publication Title

Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP108538
Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor Alpha Bound Enhancers [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Multiple regulatory regions have the potential to regulate a single gene, yet how these elements combine to impact gene expression remains unclear. To uncover the combinatorial relationships between enhancers, we developed Enhancer-interference (Enhancer-i), a CRISPR interference-based approach that can prevent enhancer activation simultaneously at multiple regulatory regions. We applied Enhancer-i to promoter-distal estrogen receptor a binding sites (ERBS), which cluster around estradiol-responsive genes and therefore may collaborate to regulate gene expression. Targeting individual sites revealed predominant ERBS that are completely required for the transcriptional response, indicating a lack of redundancy. Simultaneous interference of different ERBS combinations identified supportive ERBS that contribute only when predominant sites are active. Using mathematical modeling, we find strong evidence for collaboration between predominant and supportive ERBS. Overall, our findings expose a complex functional hierarchy of enhancers, where multiple loci bound by the same transcription factor combine to fine tune the expression of target genes. Overall design: The effects of Enhancer interference (Enhancer-i) and control guide RNA treatment on the transcriptome before and after estrogen treatment, with 2 replicates per condition.

Publication Title

Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP200955
Estrogen-independent molecular actions of mutant estrogen receptor alpha in endometrial cancer [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Estrogen receptor alpha (ESR1) mutations have been identified in hormone therapy resistant breast cancer and primary endometrial cancer. Analyses in breast cancer suggests that mutant ESR1 exhibits estrogen independent activity. In endometrial cancer, ESR1 mutations are associated with worse outcomes and less obesity, however experimental investigation of these mutations has not been performed. Using a unique CRISPR/Cas9 strategy, we introduced the D538G mutation, a common endometrial cancer mutation that alters the ligand binding domain of ESR1, while epitope tagging the endogenous locus. We discovered estrogen-independent mutant ESR1 genomic binding that is significantly altered from wildtype ESR1. The D538G mutation impacted expression, including a large set of non-estrogen regulated genes, and chromatin accessibility, with most affected loci bound by mutant ESR1. Mutant ESR1 is unique from constitutive ESR1 activity as mutant-specific changes are not recapitulated with prolonged estrogen exposure. Overall, D538G mutant ESR1 confers estrogen-independent activity while causing additional regulatory changes in endometrial cancer cells that are distinct from breast cancer cells. Overall design: RNA-seq was used to study the effects of the D538G mutation on gene expression

Publication Title

Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact