refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1191 results
Sort by

Filters

Technology

Platform

accession-icon SRP126691
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection [Leicester progressor]
  • organism-icon Homo sapiens
  • sample-icon 162 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Whole blood transcriptional signatures distinguishing patients with active tuberculosis from asymptomatic latently infected individuals have been described but, no consensus exists for the composition of optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Overall design: We undertook RNA Sequencing (RNA-Seq) of our earlier Berry et al. 2010 (GSE19444 and GSE19442) cohorts and additionally set up a prospective cohort study at Leicester (UK) in subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, we performed systematic longitudinal sampling and clinical characterisation first, to validate our TB signature using RNA-Seq in a new and independent cohort of individuals with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence setting.

Publication Title

A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection.

Sample Metadata Fields

Sex, Specimen part, Race, Subject

View Samples
accession-icon SRP126583
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection [Leicester non-progressor]
  • organism-icon Homo sapiens
  • sample-icon 129 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Whole blood transcriptional signatures distinguishing patients with active tuberculosis from asymptomatic latently infected individuals have been described but, no consensus exists for the composition of optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Overall design: We undertook RNA Sequencing (RNA-Seq) of our earlier Berry et al. 2010 (GSE19444 and GSE19442) cohorts and additionally set up a prospective cohort study at Leicester (UK) in subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, we performed systematic longitudinal sampling and clinical characterisation first, to validate our TB signature using RNA-Seq in a new and independent cohort of individuals with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence setting.

Publication Title

A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection.

Sample Metadata Fields

Sex, Specimen part, Race, Subject

View Samples
accession-icon SRP126580
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection [Berry_London]
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Whole blood transcriptional signatures distinguishing patients with active tuberculosis from asymptomatic latently infected individuals have been described but, no consensus exists for the composition of optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Overall design: We undertook RNA Sequencing (RNA-Seq) of our earlier Berry et al. 2010 (GSE19444 and GSE19442) cohorts and additionally set up a prospective cohort study at Leicester (UK) in subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, we performed systematic longitudinal sampling and clinical characterisation first, to validate our TB signature using RNA-Seq in a new and independent cohort of individuals with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence setting. All samples in this series were re-analyzed from GSE19444. There are links on each sample page to the original sample.

Publication Title

A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP126582
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection [Berry_South Africa]
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Whole blood transcriptional signatures distinguishing patients with active tuberculosis from asymptomatic latently infected individuals have been described but, no consensus exists for the composition of optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Overall design: We undertook RNA Sequencing (RNA-Seq) of our earlier Berry et al. 2010 (GSE19444 and GSE19442) cohorts and additionally set up a prospective cohort study at Leicester (UK) in subject groups of incident TB and recent TB contacts, respectively. In the Leicester cohort, we performed systematic longitudinal sampling and clinical characterisation first, to validate our TB signature using RNA-Seq in a new and independent cohort of individuals with active TB and LTBI, and secondly to provide longitudinal data in a low TB incidence setting. 43 of the 47 samples in this series were re-analyzed from GSE19442. These samples include links to the original sample at the foot of the page.

Publication Title

A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP149834
Exon Level Machine Learning Analyses Elucidate Novel Candidate miRNA Targets in an Avian Model of Fetal Alcohol Spectrum Disorder
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

An RNA-seq dataset obtained from neural fold-stage chicken (Gallus gallus, strain Special Black) embryos that were exposed to a pharmacologically-relevant alcohol concentration (52 mM for 90 min) or isotonic saline. The cranial headfolds were isolated 6 hours following the initial alcohol exposure. Following RNA isolation, cDNA synthesis, and quality assurance (20), paired-end reads (75 bp) were generated on an Illumina Genome Analyzer IIx (University of Wisconsin Biotechnology Center). Overall design: Paired end runs with 2 replicate ethanol exposed samples (pool of 23 individual neural folds) and 2 saline control samples (pool of 23 individual neural folds).

Publication Title

Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE58722
Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor infiltrating CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Coinhibitory receptor blockade is a promising strategy to boost immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for improved understanding of checkpoint blockade, but the T cell-intrinsic signaling pathways and gene expression profiles engaged during treatment are not well defined, particularly for combination approaches. We utilized a murine model of CD8+ T cell tolerance to address these issues.

Publication Title

Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11967
Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Background: The vast majority of human genes (.70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. Methodology/Principal Findings: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. Conclusions/Significance: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatability gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MGthymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse TranscriptionPolymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches

Publication Title

Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP108538
Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor Alpha Bound Enhancers [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Multiple regulatory regions have the potential to regulate a single gene, yet how these elements combine to impact gene expression remains unclear. To uncover the combinatorial relationships between enhancers, we developed Enhancer-interference (Enhancer-i), a CRISPR interference-based approach that can prevent enhancer activation simultaneously at multiple regulatory regions. We applied Enhancer-i to promoter-distal estrogen receptor a binding sites (ERBS), which cluster around estradiol-responsive genes and therefore may collaborate to regulate gene expression. Targeting individual sites revealed predominant ERBS that are completely required for the transcriptional response, indicating a lack of redundancy. Simultaneous interference of different ERBS combinations identified supportive ERBS that contribute only when predominant sites are active. Using mathematical modeling, we find strong evidence for collaboration between predominant and supportive ERBS. Overall, our findings expose a complex functional hierarchy of enhancers, where multiple loci bound by the same transcription factor combine to fine tune the expression of target genes. Overall design: The effects of Enhancer interference (Enhancer-i) and control guide RNA treatment on the transcriptome before and after estrogen treatment, with 2 replicates per condition.

Publication Title

Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE58268
MicroRNA-15/16 Antagonizes c-Myb to Control Natural Killer Cell Maturation (c-Myb overexpression)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

NK cells develop in the bone marrow and complete their maturation in peripheral organs, but the molecular events controlling maturation are incompletely understood. Utilizing an NK cell-specific miR-15/16 deficient genetic model (15aKO), we identified a critical role for miR-15/16 family microRNAs in the normal maturation of NK cells in vivo, with a specific reduction in mature CD11b+CD27- NK cells in multiple tissues. The mechanism responsible was a block in differentiation, since accelerated NK cell death was not evident, and earlier intermediates of NK cell maturation were expanded. Further, we identified Myb as a direct target of miR-15/16 in NK cells, with Myb expression increased in immature 15aKO NK cells. Following adoptive transfer, immature 15aKO NK cells exhibited defective maturation, which was rescued by ectopic miR-15/16 expression or Myb knockdown. Moreover, Myb overexpression resulted in defective NK cell maturation. Thus, miR-15/16 regulation of Myb controls the normal NK cell maturation program.

Publication Title

MicroRNA-15/16 Antagonizes Myb To Control NK Cell Maturation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55033
MicroRNA-15/16 Antagonizes c-Myb to Control Natural Killer Cell Maturation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

NK cells develop in the bone marrow and complete their maturation in peripheral organs, but the molecular events controlling maturation are incompletely understood. Utilizing an NK cell-specific miR-15/16 deficient genetic model (15aKO), we identified a critical role for miR-15/16 family microRNAs in the normal maturation of NK cells in vivo, with a specific reduction in mature CD11b+CD27- NK cells in multiple tissues. The mechanism responsible was a block in differentiation, since accelerated NK cell death was not evident, and earlier intermediates of NK cell maturation were expanded. Further, we identified Myb as a direct target of miR-15/16 in NK cells, with Myb expression increased in immature 15aKO NK cells. Following adoptive transfer, immature 15aKO NK cells exhibited defective maturation, which was rescued by ectopic miR-15/16 expression or Myb knockdown. Moreover, Myb overexpression resulted in defective NK cell maturation. Thus, miR-15/16 regulation of Myb controls the normal NK cell maturation program.

Publication Title

MicroRNA-15/16 Antagonizes Myb To Control NK Cell Maturation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact