refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 305 results
Sort by

Filters

Technology

Platform

accession-icon SRP086954
Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes SKN-1, IRE-1, and XBP-1
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Vitamin D is a secosteroid that has multiple regulatory roles including the regulation of bone and calcium homeostasis. Deficiency of 25-hydroxyvitamin D, the major circulating form of vitamin D, is associated with an increased risk of age-related chronic diseases including Alzheimer's disease, Parkinson's disease, cognitive impairment, and cancer. In this study, we utilized Caenorhabditis elegans to examine the mechanism by which vitamin D influences aging. We found that Vitamin D3-induced lifespan extension requires the stress response pathway genes SKN-1, IRE-1, and XBP-1. Vitamin D3 induced expression of SKN-1 target genes, but not canonical targets of IRE-1/XBP-1. Vitamin D3 suppressed an important molecular pathology of aging, that of widespread protein insolubility, and prevented the toxicity caused by human ß-amyloid. Our observation that vitamin D3 improves protein homeostasis and slows aging highlights the importance of maintaining appropriate vitamin D serum levels, and may explain why such a wide variety of human age-related diseases are associated with a vitamin D deficiency. Overall design: The experimental design consisted of contrasting gene expression data derived from RNA extracted from pools of synchronized aged worms. L4 worms were placed on either vehicle (DMSO) or Vitamin D (100uM) for 44 hours prior to extraction. A pool of 50 worms was considered a single biological replicate. For the Vitamin D treated group, there were 6 independent biological replicates, and were compared with a group of untreated (vehicle) wild-type N2 animals, also using 6 biological replicates.

Publication Title

Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes skn-1, ire-1, and xbp-1.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE12580
Blastocyst Injection of Wild Type Embryonic Stem Cells Induces Global Corrections in Mdx Mice.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Duchenne muscular dystrophy (DMD) is an incurable neuromuscular degenerative disease, caused by a mutation in the dystrophin gene. Mdx mice recapitulate DMD features. Here we show that injection of wild-type (WT) embryonic stem cells (ESCs) into mdx blastocysts produces mice with improved pathology. A small fraction of WT ESCs incorporates into the mdx mouse nonuniformly to upregulate protein levels of dystrophin in the skeletal muscle. The chimeric muscle shows reduced regeneration and restores dystrobrevin, a dystrophin-related protein, in areas with high and with low dystrophin content. WT ESC injection also normalizes the amount of fat, a tissue that does not express dystrophin. ESC injection without dystrophin does not prevent the appearance of phenotypes in the skeletal muscle or in the fat. Thus, dystrophin supplied by the ESCs reverses disease in mdx mice globally.

Publication Title

Blastocyst injection of wild type embryonic stem cells induces global corrections in mdx mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP158618
Using Gjd3-CreEGFP mice to examine atrioventricular node morphology and composition
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconNextSeq 500

Description

Gjd3-CreEGFP mice is a novel genetic tool to study the structural and molecular signatures of Atrioventricular Node (AVN) at a high resolution. Overall design: Focusing on the cardiac conduction system, we developed and rigorously characterized a geentic tool Gjd3-CreEGFP to perform in-depth analysis of AVN structure and composition. Utilizing this AVN-specific mouse model, we performed scRNA-Seq on neonatal Gjd3-CreEGFP mice to guide our single-cell atlas of the Atrio-ventricular conduction system (AVCS).

Publication Title

Using Gjd3-CreEGFP mice to examine atrioventricular node morphology and composition.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE104212
Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Published molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1 resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.ne incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely blunted and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with decrease in mitochondrial function. Screening of DLBCL patient samples identified that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies show that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide more definitive proof of direct contribution of HK2 in development of B-cell lymphoma and suggest that HK2 is a key metabolic driver of DLBCL phenotype.

Publication Title

Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE23025
Altered Hematopoietic Cell Gene Expression Precedes Development of Therapy-Related Myelodysplasia and Identifies Patients at Risk
  • organism-icon Homo sapiens
  • sample-icon 124 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Therapy-related myelodysplasia or acute myeloid leukemia (t-MDS/AML) is a lethal complication of cancer treatment. Although t-MDS/AML development is associated with known genotoxic exposures, its pathogenesis is not well understood and methods to predict risk of development of t-MDS/AML in individual cancer survivors are not available. We performed microarray analysis of gene expression in samples from patients who developed t-MDS/AML after autologous hematopoietic cell transplantation (aHCT) for Hodgkin lymphoma (HL) or non-Hodgkin lymphoma (NHL) and controls that did not develop t-MDS/AML after aHCT. CD34+ progenitor cells from peripheral blood stem cell (PBSC) samples obtained pre-aHCT from t-MDS/AML cases and matched controls, and bone marrow (BM) samples obtained at time of development of t-MDS/AML, were studied. Significant differences in gene expression were seen in PBSC obtained pre-aHCT from patients who subsequently developed t-MDS/AML compared to controls. Genetic alterations in pre-aHCT samples were related to mitochondrial function, protein synthesis, metabolic regulation and hematopoietic regulation. Progression to overt t-MDS/AML was associated with additional alterations in DNA repair and DNA-damage checkpoint genes. Altered gene expression in PBSC samples were validated in an independent group of patients. An optimal 63-gene PBSC classifier derived from the training set accurately distinguished patients who did or did not develop t-MDS/AML in the independent test set. These results indicate that genetic programs associated with t-MDS/AML are perturbed long before disease onset, and can accurately identify those at risk of developing this complication.

Publication Title

Altered hematopoietic cell gene expression precedes development of therapy-related myelodysplasia/acute myeloid leukemia and identifies patients at risk.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE64052
Gene expression changes during resistance toward vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy in renal cell carcinoma (RCC)
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was performed to understand the gene expression changes that accompany treatment of renal cell carcinoma (RCC) with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) therapy. Human RCC cell lines were implanted into the flanks of nude beige mice, allowed to reach 12mm in long axis, and then treated with TKIs (sunitinib or sorafenib). Tumors were excised at 2 timepoints (prior to any therapy and at the 20mm endpoint of the study) and gene expression analysis was performed.

Publication Title

Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP184537
TFEB-driven lysosomal biogenesis is pivotal for PGC1a-dependent renal stress resistance
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is somewhat paradoxical that proliferator gamma coactivator 1-alpha (PGC1a), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1a's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1a knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1a not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1a did not consistent affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1a in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1a's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance. Overall design: 12 samples in total = 3 replicates each from 4 groups

Publication Title

TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE58659
Transcript profile comparison of Zbtb20-sufficient and Zbtb20-deficient polyclonal bone marrow plasma cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ZBTB20 is an adjuvant-specific factor for long-term antibody responses. This factor is critical for maintaining long-lived plasma cells in alum-adjuvanted antibody responses but is dispensable for TLR ligand-adjuvanted responses.

Publication Title

Adjuvant-specific regulation of long-term antibody responses by ZBTB20.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79212
Gene expression analysis in wild-type and OsHOX24 rice overexpression line under control and drought stress conditions
  • organism-icon Oryza sativa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice (US) Gene 1.0 ST Array (rusgene10st)

Description

Several homeobox genes belonging to HD-ZIP I subfamily are highly induced by drought stress at various developmental stages in rice. To analyze the role of a candidate HD-ZIP I subfamily member, OsHOX24, we constitutively overexpressed it in rice. The physiological analyses revealed that overexpression of OsHOX24 gene reduced drought stress tolerance in transgenic plants as compared to wild-type.

Publication Title

Over-Expression of <i>OsHOX24</i> Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35258
Comparison of low water potential (drought)-regulated gene expression in wild type (Col-0) and the hai1-2 (At5g59220) mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Clade A PP2C Highly ABA-Induced1 (HAI1, At5g59220) is strongly up-regulated by low water potential in an ABA-dependent manner. Using knockout mutants of hai1, we found that HAI1 functions as a negative regulator of low water potential-induced proline and osmoregulatory solute accumulation. We also found a relatively weak and limited interaction of HAI1 with the RCAR/PYL family of ABA receptors. This, plus its induced expression, suggest that HAI1 remains active during stress and attenuates specific aspects of drought response.

Publication Title

Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact