refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE47712
Functional studies of the Yeast Mediator Tail Module Subunits
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when MED5/15 or MED15/16 are inactivated together.

Publication Title

Functional studies of the yeast med5, med15 and med16 mediator tail subunits.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP060416
Single cell RNA-sequencing of human tonsil Innate lymphoid cells (ILCs)
  • organism-icon Homo sapiens
  • sample-icon 648 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Single cell RNA-sequencing of human tonsil Innate lymphoid cells (ILCs) from three independent tonsil donors. Overall design: Sequencing libraries were prepared from FACS sorted individual ILCs with the Smart-Seq2 protocol (Picelli et al. Nature Methods 2013)

Publication Title

The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059943
Nurr1 and Retinoid X Receptor ligands stimulate Ret signaling in dopamine neurons and can alleviate a-synuclein disrupted gene expression
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We ovexpressed human alpha synuclein alone or together with Nurr1 in mouse primary midbrain cultures and identified the full spectrum of genes whose expression is affected by alpha synuclein, including genes whose expression is normalized after Nurr1 overexpression. Moreover we treated mouse primary midbrain cultures with Bexarotene or short hairpin RNA fro Nurr1, sorted out the dopamine neurons and assessed the effects of Bexarotene and of the Nurr1 downregulation on gene expression. Overall design: Comparison of 3 Synuclein samples to 5 controls (RFP), Comparison of 3 Synuclein + Nurr1 samples to 5 controls (RFP), Comparison of 3 Bexarotene samples to 3 controls (DMSO), comparison of 1 short hairpin against Nurr1 to 1 control (scrambled).

Publication Title

Nurr1 and Retinoid X Receptor Ligands Stimulate Ret Signaling in Dopamine Neurons and Can Alleviate α-Synuclein Disrupted Gene Expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69149
Histone gene regulation in normal and tumor cells
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st), Illumina Genome Analyzer IIx

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE69148
Differential response of normal and tumor cells to nucleosome depletion
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Gene-expression in siRNA treated U2OS and hTERT-RPE1 cells showed that CASP8AP2, NPAT and HINFP do not regulate expression of each other, and do not have any common target genes, except histones. Most histone genes are downregulated in U2OS cells following loss of CASP8AP2, NPAT or HINFP. In normal cells, highly-expressed histone genes were downregulated, albeit less than in tumor cells following loss of CASP8AP2. The p53 target genes were upregulated relatively late, clearly after the changes in expression of histone genes were observed.

Publication Title

Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25621
The genes regulated by SOX11 in mantle cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The genes regulated by SOX11 in MCL was investigated in MCL cell line Granta 519 by siRNA knock down system. Cells were transfected using the LONZA electroporation system. Results represent cells harvested after 20 hours. Details of the experiment is published in PMID 21124928.

Publication Title

Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP017560
Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Nurr1 (Nr4a2, nuclear receptor subfamily 4 group A member 2) is needed for the development of ventral midbrain dopaminergic neurons, and has been associated with Parkinson''s disease. We used mice where the Nurr1 gene is ablated by tamoxifen treatment selectively in dopaminergic neurons. As a control, we used tamoxifen-treated mice where Nurr1 is not ablated. By laser microdissection of neurons selected by their TH1 (Th1l, TH1-like homolog) gene expression, we selected dopaminergic neurons for RNA extraction and high-throughput mRNA sequencing, in order to identify genes regulated by Nurr1. We found the main functional category of Nurr1-regulated genes are the nuclear-encoded mitochondrial genes. Overall design: Dopaminergic neurons with or without Nurr1 knocked out. TH-positive neurons were laser capture microdissected from cryostat coronal sections of the midbrain.

Publication Title

Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP133642
Single cell RNA-sequencing of EpCAM-, CD45-, CD31- NG2- murine mammary tumor fibroblasts
  • organism-icon Mus musculus
  • sample-icon 768 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study was conducted to determine heterogeneity of cancer-associated fibroblasts (CAFs) in mammary tumors, by unsupervised analysis of single cell transcriptomes. Overall design: 768 single EpCAM-, CD45-, CD31- NG2- fibroblasts were isolated from mammary tumors of two 14 week old MMTV-PyMT mice. The cells were sequenced following the Smart-Seq2 protocol (Picelli et al. Nature Methods 2013).

Publication Title

Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP100521
Single-Cell RNA-seq study of E13.5 and P7 brain and Spinal Cord Pdgfra-GFP positive samples during development in Mice.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In order to elucidate the developmental origin of oligodendrocyte precursor cells (OPCs) and get a better understanding of the several waves of OPC generation, we look at several timepoints and perform single-cell RNA-seq on Pdgfra positive populations in Mice. Overall design: Mice line used in this study included Pdgfra-cre-ERT/RCE and the Pdgfra-H2BGFP knock-in mouse. Embryos at embryonic day 13.5 and pups from post-natal day 7, from both genders of the Pdgfra-GFP mice line were used to extract OPCs, as well as E12.5 and P3 tamoxifen injected mice harvested at P7. The single cell suspension from embryonic and post-natal tissue was FACS sorted for GFP positive cells using a BD FACSAria III Cell Sorter B5/R3/V3 system.

Publication Title

Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP040292
Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIlluminaHiSeq2000

Description

We performed mRNA-seq of a PRKACA-mutant adrenal tumor and demonstrated that the mutation is expressed at the mRNA level. Overall design: Total RNA obtained from a cortisol-producing adrenal tumor with a PRKACA p.Leu206Arg mutation.

Publication Title

Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact