refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE10016
Expression data of Arabidopsis thaliana rosettes in an extended night
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Usually starch is nearly depleted at the end of the night. To induce a gradual depletion of carbon, we have analysed the global response of transcripts during an extension of the night, where carbon becomes severely limiting from about four hours onwards.

Publication Title

Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10522
Expression data of Arabidopsis thaliana rosettes during chilling
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program.

Publication Title

Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3416
Diurnal gene expression in Arabidopsis thaliana Col-0 rosette leaves
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

How do the transcript levels of leaf-expressed genes change in a normal day-night cycle? The interest is in genes that are regulated by the circadian clock and the diurnal component (i.e. light, metabolite changes). Plants were grown on soil in a 12/12 h light/dark rythm at 20C day and night. 5 weeks after germination the rosettes of the non-flowering plants were harvested, 15 plants per sample. Plants were harvested at 6 timepoints every 4 hours beginning with the end of the night (still in darkness).

Publication Title

Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25595
The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS is induced by the oxygen-responsive regulator ANR when the oxygen supply decreases. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Publication Title

The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1919
Rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover key pathomechanisms, we performed whole-genome gene expression analyses. Synovial tissues from rheumatoid arthritis patients were compared to those from osteoarthritis patients and to normal donors.

Publication Title

Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE68443
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE68429
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity [BAT]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Analysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.

Publication Title

Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE70562
Brown fat-specific YY1 deficiency effect on subcutaneous white adipose tissue
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Analysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.

Publication Title

Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE68382
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity [IWAT]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Analysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.

Publication Title

Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP163151
Genome-wide expression analysis of human hTert immortalized fibroblasts after donwregulation of MCM7
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues. Overall design: 6 samples in total: 3 control, 3 siRNA MCM7

Publication Title

Resting cells rely on the DNA helicase component MCM2 to build cilia.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact