refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 181 results
Sort by

Filters

Technology

Platform

accession-icon GSE55974
LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The mRNA processing body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1/LMKB is an RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. To investigate the function of LMKB in a human B lymphocyte cell line, BJAB cells were treated with either control lentivirus or a lentivirus containing LMKB siRNA.

Publication Title

LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68687
Expression data from NRK-52E cells treated with aristolochic acids for 6h, 24h and 72h
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In this study we have examined the effect of sub-cytotoxic exposure to aristolochic acids (1.65M) at 6h, 24h and 72h on the whole-genome expression profile in a rat proximal renal tubule cell line (NRK-52E).

Publication Title

Aristolochic acids - Induced transcriptomic responses in rat renal proximal tubule cells in vitro.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE43144
Molar and incisor development
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

One of the key questions in developmental biology is how from universally shared molecular mechanisms and pathways, is it possible to generate organs displaying similar or complementary functions, with a wide range of different shapes or tissue organization? The dentition represents a valuable system to address the issues of differential molecular signatures generating specific tooth types. We performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5) prior to recognizable tooth shape and cusp pattern.

Publication Title

Molars and incisors: show your microarray IDs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19710
Microarray analysis of rat pulmonary artery smooth muscle cells before or after exposure to S-nitrosoglutathione (GSNO)
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Nitric oxide (NO) regulated pulmonary vascular function and structure, in part, via its effect on gene expression. We used microarrays to determine the up- and downregulated genes in rat pulmonary artery smooth muscle cells exposed to the NO donor S-nitrosoglutathione (GSNO) for 1, 2, and 4 hours.

Publication Title

Phosphodiesterase 3A expression is modulated by nitric oxide in rat pulmonary artery smooth muscle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35160
Functional analysis of the cytoprotective transcription factor Nrf2 in skin morphogenesis and disease: Identification of Nrf2 target genes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Nrf2 transcription factor is a key player in the cellular stress response, which regulates the expression of important antioxidant enzymes and other cytoprotective proteins. We recently generated a novel transgenic mouse model to determine the function of Nrf2 in the skin. These mice revealed interesting phenotypic abnormalities, including hyperkeratosis and acanthosis. To gain insight into the underlying molecular mechanisms, we wanted to identify genes, which are differentially expressed in the skin of wild-type and mutant mice before the onset of phenotypic abnormalities.

Publication Title

Nrf2 links epidermal barrier function with antioxidant defense.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE80273
The aryl hydrocarbon receptor in keratinocytes is essential for murine skin barrier integrity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in adaptive cell functions, and highly active in the epidermis. AhR-ligands can accelerate keratinocyte differentiation, but a precise role for AhR in the skin barrier is unknown. We here show that transepidermal water loss (TEWL), a parameter of skin barrier integrity, is high in AhR-deficient (AhR-KO) mice. Experiments with conditionally AhR-deficient mouse lines identified keratinocytes as the major responsible cell population for high TEWL. Electron microscopy showed weaker inter-cellular connectivity in the epidermis of keratinocytes in AhR-KO mice, and gene expression analysis identified many barrier-associated genes as AhR targets. Moreover, AhR-deficient mice had higher inter-individual differences in their microbiome. Interestingly, removing AhR-ligands from the diet of wild-type mice mimicked AhR-deficiency regarding the impaired barrier. Vice versa, re-addition of the plant-derived ligand indole-3-carbinol (I3C) rescued the barrier deficiency even in aged mice. Our results suggest that functional AhR expression is critical for skin barrier integrity and that AhR represents a molecular target for the development of novel therapeutic approaches for skin barrier diseases, including dietary intervention.

Publication Title

Aryl Hydrocarbon Receptor in Keratinocytes Is Essential for Murine Skin Barrier Integrity.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE51034
RSK2 is a modulator of craniofacial development
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked monogenic disease associating severe learning deficit andassociated to typical facial and digital abnormalities and skeletal changes. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.

Publication Title

RSK2 is a modulator of craniofacial development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34229
Expression data of liver samples of dex or vehicle treated wildtype and HDAC6- knockout C57Bl/6 mice respectively
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In the present study, we investigated the importance of histone deacetylase 6 (HDAC6) for glucocorticoid receptor (GR) mediated effects on glucose metabolism, and its potential as a therapeutic target for the prevention of glucocorticoid (GC)-induced diabetes. Dexamethasone (dex)-induced hepatic glucose output and GR translocation were analysed in wildtype (wt) and HDAC6-deficient (HDAC6ko) mice. The effect of the specific HDAC6-inhibitor tubacin was analysed in-vitro. Wt and HDAC6ko mice were subjected to 3 weeks dex treatment before analysis of glucose and insulin tolerance. HDAC6ko mice showed impaired dex-induced hepatic GR translocation. Accordingly, dex induced expression of a large number of hepatic genes was significantly attenuated in mice lacking HDAC6 and by tubacin in-vitro. Glucose output of primary hepatocytes from HDAC6ko mice was diminished. A significant improvement of dex-induced whole-body glucose intolerance as well as insulin resistance in HDAC6ko mice compared to wt littermates was observed. The present study demonstrates that HDAC6 is an essential regulator of hepatic GC stimulated gluconeogenesis and impairment of whole body glucose metabolism through modification of GR nuclear translocation. Selective pharmacological inhibition of HDAC6 may provide a future therapeutic option against the pro-diabetogenic actions of GCs.

Publication Title

Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE6965
Gene expression profile of human dendritic cells after infection with A. fumigatus
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DCs are localized under the mucosa of the lungs and the gastrointestinal tract, and therefore come into close contact with A. fumigatus germ tubes during early steps of infection as soon as fungi become invasive. For a more detailed insight into differentially regulated genes, whole genome microarray analysis was performed.

Publication Title

Impact of mycophenolic acid on the functionality of human polymorphonuclear neutrophils and dendritic cells during interaction with Aspergillus fumigatus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18557
Low dose human chorionic gonadotropin hCG
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Influence of ovarian stimulation with 200 IU of hCG, (administered in the late follicular phase among ICSI patients undergoing a GnRH-antagonist protocol), on the endometrium on the day of oocyte pick-up.

Publication Title

Gene expression profile in the endometrium on the day of oocyte retrieval after ovarian stimulation with low-dose hCG in the follicular phase.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact