refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 181 results
Sort by

Filters

Technology

Platform

accession-icon GSE73896
Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes,including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses,respectively.

Publication Title

Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64392
Prospective derivation of a 'Living Organoid Biobank' of colorectal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal (CRC) patients. For most, organoids were also generated from adjacent normal tissue. The organoids closely resemble the original tumor. The spectrum of genetic changes observed within the 'living biobank' agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to robotized, high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43 (rather than in APC). Organoid technology may fill the gap between cancer genetics and patient trials, complement cell line- and xenograft-based drug studies and allow personalized therapy design.

Publication Title

Prospective derivation of a living organoid biobank of colorectal cancer patients.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE15940
Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Analysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother

Publication Title

Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE46863
Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Right ventricular failure (RVF) due to pressure load is a major cause of death in congenital heart diseases and pulmonary hypertension. The mechanisms of RVF are yet unknown. Research is hampered by the lack of a good RVF model. Our aim was to study the pathophysiology of RVF in a rat model of chronic pressure load.

Publication Title

Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE37546
Disturbed Hepatic Carbohydrate Management During High Metabolic Demand in Medium-Chain Acyl-CoA Dehydrogenase (MCAD)-deficient Mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD-/- mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD-/- mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1a (Pgc-1a) and decreased peroxisome proliferator-activated receptor alpha (Ppar a) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD-/- mice in both conditions,suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD-/- mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD-/- mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD-/- mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD-/- mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD-/- mice, was mainly due to enhanced peripheral glucose uptake. Conclusion: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.

Publication Title

Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE55304
Perinatal malnutrition in male mice influences gene expression in the next generation offspring: Potential role of epigenetics.
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Perinatal nutritional imbalances may have long-lasting consequences on health and disease, increasing risk of obesity, insulin resistance, type 2 diabetes or cardiovascular disease. This idea has been conceptualized in the Developmental Origins of Health and Disease Hypothesis (DOHaD). In addition, there is evidence that such early-programmed phenotypes can be transmitted to the following generation(s). It is proposed that, environmentally induced, transmission of disease risk is mediated by epigenetic mechanisms.

Publication Title

In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24451
Knockout of the Acyl CoA binding protein (ACBP) in mice - expression profile from the liver of 21 days old ACBP-/- and +/+ mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am

Publication Title

Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79150
Gene expression profiling of skin and blood in hidradenitis suppurativa
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiling of skin and blood in hidradenitis suppurativa.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE72702
Gene expression profiling of skin in hidradenitis suppurativa
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

To acquire a better understanding of the molecular pathogenesis of HS, we performed mRNA microarray studies to compare gene expression in lesional skin to healthy skin of HS patients.

Publication Title

Gene expression profiling of skin and blood in hidradenitis suppurativa.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE79149
Gene expression profiling of blood in hidradenitis suppurativa
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

To acquire a better understanding of the molecular pathogenesis of hidradenitis suppurativa (HS), we performed mRNA microarray studies to compare whole blood gene expression of HS patients to that of healthy normal subjects.

Publication Title

Gene expression profiling of skin and blood in hidradenitis suppurativa.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact