refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 110 results
Sort by

Filters

Technology

Platform

accession-icon GSE55662
Plasticity of transcriptional regulation under antibiotic stress
  • organism-icon Escherichia coli k-12
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here we demonstrate that inactivation of a central regulator of iron homeostasis (fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated a substantial reorganization of the Fur regulon in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, over-expression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, while inhibition of the SOS response-mediated mutagenesis had no such effect in fur deficient population. In sum, our work revealed the central role of iron metabolism in de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies.

Publication Title

Perturbation of iron homeostasis promotes the evolution of antibiotic resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26712
A Gene Signature Predicting for Survival in Suboptimally Debulked Patients with Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 195 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To identify a prognostic gene signature accounting for the distinct clinical outcomes in ovarian cancer patients

Publication Title

A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP181605
Identifying Tumor Progression by Genome-Wide Characterization of Immature Myeloid Cells In the Peripheral Blood
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

characterize the molecular signature of PB-IMC in different stages of tumor development, thus possibly leading to a novel, sensitive and elegant approach for early cancer detection and surveillance. Overall design: Two types of cancer. For each type 4 groups (day 0, day 4, day 8, day 11), for each group 3 biological repeats

Publication Title

The transcriptional profile of circulating myeloid derived suppressor cells correlates with tumor development and progression in mouse.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE77558
Analysis of differentially expressed genes between Huntingtons disease and control iPSCs derived GABA MS-like neurons
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Huntingtons disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons under defined culture conditions. Analysis of differentially expressed genes between Huntingtons disease and wild type iPSCs derived GABA MS-like neurons has been performed.

Publication Title

Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE77230
Cell Cycle-Targeting MicroRNAs as Therapeutic Tools Against Refractory Cancers
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP068924
Cell Cycle-Targeting MicroRNAs as Therapeutic Tools Against Refractory Cancers [SW900 cells]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Cyclins and cyclin-dependent kinases (CDKs) are hyperactivated in nearly all human tumor types. To identify new approaches for interfering with cyclins/CDKs, we systematically searched for microRNAs (miRNAs) regulating these proteins. We uncovered a group of miRNAs that target nearly all cyclins and CDKs, and demonstrated that these miRNAs are very effective in shutting off cancer cell expansion. By profiling the response of over 120 human cancer cell lines representing 12 tumor types to these cell-cycle-targeting miRNAs, we identified miRNAs particularly effective against triple-negative breast cancers and KRAS-mutated cancers. We also derived expression-based algorithm that predicts response of primary tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we halted tumor progression in seven mouse xenograft models, including three highly aggressive and treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types. Overall design: RNA-seq for SW900 cells transfected with 25 nM of miR-193a-3p mimic or 25 nM of negative miRNA control (Negative control #2, Ambion).

Publication Title

Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77228
Cell Cycle-Targeting MicroRNAs as Therapeutic Tools Against Refractory Cancers [dermatofibrosarcoma]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cyclins and cyclin-dependent kinases (CDKs) are hyperactivated in nearly all human tumor types. To identify new approaches for interfering with cyclins/CDKs, we systematically searched for microRNAs (miRNAs) regulating these proteins. We uncovered a group of miRNAs that target nearly all cyclins and CDKs, and demonstrated that these miRNAs are very effective in shutting off cancer cell expansion. By profiling the response of over 120 human cancer cell lines representing 12 tumor types to these cell-cycle-targeting miRNAs, we identified miRNAs particularly effective against triple-negative breast cancers and KRAS-mutated cancers. We also derived expression-based algorithm that predicts response of primary tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we halted tumor progression in seven mouse xenograft models, including three highly aggressive and treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types.

Publication Title

Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12807
Gene expression data throughout spontaneous functional regression of the rhesus macaque corpus luteum.
  • organism-icon Macaca mulatta
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Luteolysis of the corpus luteum (CL) during non-fertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the primate CL are poorly defined. Therefore, a genomic approach was utilized to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected prior to (days 10-11 post-LH surge, mid-late [ML] stage) or during (days 14-16, late stage) functional regression. Based on P4 levels, late stage CL were subdivided into functional late (FL, serum P4 > 1.5 ng/ml) and functionally-regressed late (FRL, serum P4 < 0.5 ng/ml) groups (n=4 CL/group). Total RNA was isolated, labeled and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; p< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL, 2) decreasing from ML through FRL, and 3) increasing ML to FL, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in 4 of 5 differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

Publication Title

Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE49405
RMST associates with SOX2 to regulate neurogenesis
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina Genome Analyzer

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE49403
RMST associates with SOX2 to regulate neurogenesis [Illumina expression data]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina Genome Analyzer

Description

We report that knockdown of the lncRNA RMST changes the gene expression profile of neural stem cells.

Publication Title

The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact