refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 67 results
Sort by

Filters

Technology

Platform

accession-icon GSE3249
Analysis of RPE65 loss of function in mouse retina
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To characterize gene response in RPE65-/- mouse model of Lebers congenital amaurosis during progression of the disease, we analyzed differential gene expression in retinae early in the development of the disease, namely before and at the onset of photoreceptor cell death in knock-out mice of 2, 4 and 6 months of age.

Publication Title

Biological characterization of gene response in Rpe65-/- mouse model of Leber's congenital amaurosis during progression of the disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP137016
Single cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta
  • organism-icon Mus musculus
  • sample-icon 67 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

We present single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11. Our study reveals the transcriptional dynamics occuring during endothelial to hematopoietic transition, the process responsible for the production of hematopoietic stem cells. Overall design: single-cell mRNA-Sequencing of various endothelial and hematopoietic populations isolated from the mouse embryonic aorta at E10 and E11

Publication Title

Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE51014
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus, Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE51012
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP030036
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 4 biological replicates per condition

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51013
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP030037
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 3 biological replicates per condition

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP074299
A single-cell transcriptome atlas of the human pancreas
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 500

Description

To understand organ (dys)function it is important to have a complete inventory of its cell types and the corresponding markers that unambiguously identify these cell types. This is a challenging task, in particular in human tissues, because unique cell-type markers are typically unavailable, necessitating the analysis of complex cell type mixtures. Transcriptome-wide studies on pancreatic tissue are typically done on pooled islet material. To overcome this challenge we sequenced the transcriptome of thousands of single pancreatic cells from deceased organ donors with and without type 2 diabetes (T2D) allowing in silico purification of the different cell types. We identified the major pancreatic cell types resulting in the identification of many new cell-type specific and T2D-specific markers. Additionally we observed several subpopulations within the canonical pancreatic cell types, which we validated in situ. This resource will be useful for developing a deeper understanding of pancreatic biology and diabetes mellitus. Overall design: Human cadaveric pancreata were used to extract islets of Langerhans, which were kept in culture until single-cell dispersion and FACS sorting. Single-cell transcriptomics was performed on live cells from this mixture using CEL-seq or on cells stained for CD63, CD13, TGFBR3 or CD24 and CD44. The RaceID algorithm was used to identify clusters of cells corresponding to the major pancreatic cell types and to mine for novel cell type-specific genes as well as subpopulations within the known pancreatic cell types.

Publication Title

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP067892
Single-cell RNA-seq reveals distinct maturation stages of the Paneth cell lineage
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

Paneth cells (PCs) are long-lived secretory cells that reside at the bottoms of small intestinal crypts. Besides serving as niche cells for the neighboring Lgr5-positive stem cells, PCs secrete granules containing a broad spectrum of antimicrobial proteins, including lysozymes and defensins1. Here, we have used single-cell RNA sequencing to explore PC differentiation. We found a maturation gradient from early secretory progenitors to mature PCs, capturing the full maturation path of PCs. Moreover, differential expression of a subset of defensin genes in lysozyme-high PCs, e.g. Defa20, reveals at least two distinct stages of maturation. Overall design: We traced Lgr5+ stem cells from Lgr5-CreERT2 C57Bl6/J mice bred to a Rosa26LSL-YFP reporter mice and sorted YFP+ cells 5 days, 3 weeks and 8 weeks after tamoxifen injection.

Publication Title

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE34885
Defective NK cells in AML patients at diagnosis are associated with blast transcriptional signatures of immune evasion
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.

Publication Title

Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.

Sample Metadata Fields

Disease, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact