refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE42331
Gene expression data from whole blood of Klinefelter Syndrome patients compared to male and female controls
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Patients with Klinefelter Syndrome have the karyotype 47,XXY. These men are suffering from hypergonadotropic hypogonadism and are infertile. It is debated whether the different hormonal constitution observed in these patients or different gene expression

Publication Title

Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE98643
Spotlight and whole-plant far-red enrichment at sub-organ-specific level
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

In dense stands,the earliest neighbor response is induced by touching,leading to shade avoidance. During light competion the R:FR distribution is not homogenous, leading to local differences in light quality (R:FR) within the same leaf. Hyponasty is induced by FR-signaling in the lamina tip, which then induces local cell growth in the petiole base. Likewise, local touching of the leaf tip induces a similar phenoype.

Publication Title

Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28016
Effect of fasting on human skeletal muscle mRNA levels
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The goal of these studies was to determine the effects of fasting on skeletal muscle mRNA levels in healthy human subjects.

Publication Title

mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE85682
Expression data from intestinal dendritic cells and macrophages of VDTR mice at 4 hours post diphtheria toxin administration
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserve self-tolerance and prevent chronic inflammation and autoimmune pathologies. However the diverse array of phagocytes residing within different tissues combined with the necessarily prompt nature of apoptotic cell clearance has made it difficult to study this process in situ. Thus, the full spectrum of functions executed by tissue resident phagocytes in response to homeostatic apoptosis remains unclear.

Publication Title

Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87770
R:FR and blue signaling during competition at high plant densities
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Growth in dense stands induces shade avoidance responses. Late stages of stand development lead to low red:far-red (R:FR) and low blue light conditions.

Publication Title

Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE47736
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47734
Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice [BeadArray]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The preferential localization of some neoplasms, such as serrated polyps, in specific areas of the intestine suggests that non-genetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine, but develop serrated polyps only in the cecum.

Publication Title

Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20126
Transcriptome analysis of human Whartons jelly stem cells
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20124
Transcriptome analysis of human Whartons jelly stem cells: in-house analysis
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20125
Transcriptome analysis of human Whartons jelly stem cells: meta-analysis
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.

Publication Title

Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact