refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE6548
An estrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was performed to check that ESR1 and BMI1 are biologically active after lentiviral transduction of primary human mammary epithelial cells (HMECs) with lentiviral vectors expressing ESR1 and BMI1 from the human PGK promoter. ESR1 targets like PGR, PRLR and GREB1, but not TFF1 and XBP1, were induced by estradiol in the ESR1-expressing cells. BMI1 targets like BMI1, NEFL and CCND2 were repressed in the BMI1-expressing cells. BMI1 suppressed genes associated with squamous and neural differentiation in the ESR1 plus BMI1-expressing cells.

Publication Title

An oestrogen-dependent model of breast cancer created by transformation of normal human mammary epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6014
A Mitochondria-K+ Channel Axis Is Suppressed in Cancer & Its Normalization Promotes Apoptosis and Inhibits Cancer Growth
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The unique metabolic profile of most cancers (aerobic glycolysis) might confer apoptosis-resistance and be therapeutically targeted. Compared to normal cells, several human cancers have high mitochondrial membrane potential and low expression of the K+ channel Kv1.5, both contributing to apoptosis-resistance. Dichloroacetate (DCA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK), shifts metabolism from glycolysis to glucose oxidation, decreases mitochondrial membrane potential, increases mitochondrial-H2O2 and activates Kv channels in all cancer, but not normal cells; DCA upregulates Kv1.5 by an NFAT1-dependent mechanism. DCA induces apoptosis, decreases proliferation and tumor growth in vitro and in vivo, without apparent toxicity. Molecular inhibition of PDK2 by siRNA mimics DCA. The mitochondria-NFAT-Kv axis and PDK are important therapeutic targets in cancer; the orally available DCA is a novel selective anticancer agent.

Publication Title

A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1561
EORTC 10994 clinical trial
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

EORTC 10994 is a phase III clinical trial comparing FEC with ET in patients with large operable, locally advanced or inflammatory breast cancer (www.eortc.be). Frozen biopsies were taken at randomisation. RNA was extracted from 100um thickness of 14G core needle biopsies. Adjacent sections were tested by H&E to confirm >20% tumour cell content. 100 ng total RNA per chip were amplified using the Affymetrix small sample protocol (IVT then Enzo). 49 tumours were tested on Affymetrix U133A chips. The CEL files were quantile normalised together using rma. Clinical response data are not available yet.

Publication Title

Identification of molecular apocrine breast tumours by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6399
Comparison between gene expression in heart from Emd KO and control mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by EMD mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Emd KO mouse model.

Publication Title

Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45818
Differential Gene Regulation during murine in vivo heart ischemia comparing wildtype and Per2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion.

Publication Title

Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43881
HIPK2 and MED19 are new regulators of androgen receptor in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

Publication Title

A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP201917
Bcl6 neurogenic activity in in vitro cortical progenitors [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Transcriptome analysis following Bcl6 induction (24h doxycycline) in mouse ES-cell-derived cortical progenitors (differentiation day 12) shows that Bcl6 promotes a neurogenic transcription program and represses selective genes of the main proliferative pathways. Overall design: RNA-seq screen for Bcl6-elicited gene expression changes in in vitro cortical progenitors (n=4)

Publication Title

Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE8000
Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6397
Comparison between gene expression in heart from Lmna H222P heterozygous and control mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6398
Comparison between gene expression in heart from Lmna H222P homozygous and control mice
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact