refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE6014
A Mitochondria-K+ Channel Axis Is Suppressed in Cancer & Its Normalization Promotes Apoptosis and Inhibits Cancer Growth
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The unique metabolic profile of most cancers (aerobic glycolysis) might confer apoptosis-resistance and be therapeutically targeted. Compared to normal cells, several human cancers have high mitochondrial membrane potential and low expression of the K+ channel Kv1.5, both contributing to apoptosis-resistance. Dichloroacetate (DCA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK), shifts metabolism from glycolysis to glucose oxidation, decreases mitochondrial membrane potential, increases mitochondrial-H2O2 and activates Kv channels in all cancer, but not normal cells; DCA upregulates Kv1.5 by an NFAT1-dependent mechanism. DCA induces apoptosis, decreases proliferation and tumor growth in vitro and in vivo, without apparent toxicity. Molecular inhibition of PDK2 by siRNA mimics DCA. The mitochondria-NFAT-Kv axis and PDK are important therapeutic targets in cancer; the orally available DCA is a novel selective anticancer agent.

Publication Title

A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061855
Identification of qkia/c target genes
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Quaking are RNA binding proteins, which are known to regulate the expression of different genes at the post-transcriptional level. Genetic interference with quaking a (qkia) and quaking c (qkic) leads to major myofibril defects during zebrafish development, without affecting early muscle differentiation. In order to understand how qkia and qkic jointly regulate myofibril formation, we performed a comparative analysis of the transcriptome of qkia/qkic (qkia mutant injected with qkic morpholino) versus control embryos. We show that Quaking activity is required for accumulation of the muscle-specific tropomyosin 3 transcript, tpm3.1. Whereas interference with tmp3.1 function disrupts myofibril formation, reintroducing tpm3.1 transcripts into embryos with reduced Quaking activity can restore structured myofibrils. Thus, we identify tropomyosin as an essential component in the process of myofibril formation and as a relay downstream of the regulator proteins Quaking. Overall design: Transcriptome of control versus qkia/qkic embryos at 24-26hpf. Biological triplicate were prepared for both condition (3x2 samples).

Publication Title

Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98957
Gene expression profile of CD141+DNGR-1+ dendritic cells (cDC1s) derived in vitro from multipotent lymphoid progenitors (MLP) or common myeloid progenitors (CMP)
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

CD141+DNGR-1+ cDC1 have a dual origin. Both MLP and CMP can differentiate in CD141+DNGR-1+ cDC1s.

Publication Title

Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6399
Comparison between gene expression in heart from Emd KO and control mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by EMD mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Emd KO mouse model.

Publication Title

Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079213
Innate to adaptive: Human IFN-gamma producing CD4+ T cells can derive directly from CXCL8-producing recent thymic emigrants.
  • organism-icon Homo sapiens
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

An unanticipated feature of the human neonatal CD4 T cell response is a robust capacity to produce CXCL8. However, this ''innate-like'' function dissipates with age and is scarce in the adult. Here, we investigated the fate of CD4+CXCL8+ cells and their transition into conventional adaptive T cells. We show that CXCL8 is imprinted on immature thymocytes prior to TCR signalling and is maintained in T cell committed thymic progenitors and recent thymic emigrants (RTEs) of adults as well as neonates. Hence, rather than being unique to neonates, CXCL8-producing CD4+ T cells decrease with age in humans (and in humanised mice) owing to the decline in thymic output, coupled with the cells' peripheral expansion. By cloning of CXCL8+CD4+ cells from cord blood, we were able to track effector function within daughter cells and demonstrate that these cells can convert to IFN-g producing cells. In sum, we provide direct evidence that 'innate like' CXCL8-producing CD4+ T cells emerge from the thymus and can transition into conventional adaptive Th1 cells Overall design: Examination of RNA-Seq count data from 96 single cells

Publication Title

Adaptive from Innate: Human IFN-γ<sup>+</sup>CD4<sup>+</sup> T Cells Can Arise Directly from CXCL8-Producing Recent Thymic Emigrants in Babies and Adults.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE45818
Differential Gene Regulation during murine in vivo heart ischemia comparing wildtype and Per2 deficient mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In fact, Per2-/- mice have larger infarct sizes with a deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we performed lactate measurements during reperfusion in Per1-/-, Per2-/- or wildtype mice followed by gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2-/- mice. Lactate measurements in whole blood confirmed a dominant role of Per2 for lactate production during myocardial ischemia. Surprisingly, high-throughput gene array analysis of eight different conditions on one 24-microarray plate revealed dominantly lipid metabolism as differentially regulated pathway in wildtype mice when compared to Per2-/-. In all treatment groups, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2-/- mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL6 or TNFa levels during reperfusion in Per2-/- mice. In summary, these studies reveal a novel role of cardiac Per2 for fatty acid metabolism or inflammation during myocardial ischemia and reperfusion.

Publication Title

Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43881
HIPK2 and MED19 are new regulators of androgen receptor in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

Publication Title

A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE8000
Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6397
Comparison between gene expression in heart from Lmna H222P heterozygous and control mice
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6398
Comparison between gene expression in heart from Lmna H222P homozygous and control mice
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The present research is devoted to the identification of gene(s) severely affected by LMNA mutations, leading to striated muscle laminopathies and more specifically the cardiomyopathy. For this purpose, we developped a large-scale gene expression approach on heart and skeletal tissues from Lmna H222P heterozygous Knock-In mouse model.

Publication Title

Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact