refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 442 results
Sort by

Filters

Technology

Platform

accession-icon GSE46371
Expression data from zebrafish (Danio rerio) embryos exposed to methyl tert-butyl ether
  • organism-icon Danio rerio
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Methyl tert-butyl ether (MTBE) has been shown to target developing vasculature in piscine and mammalian model systems. In the zebrafish, MTBE induces vascular lesions throughout development. These lesions result from exposure to MTBE at an early stage in development (6-somites to Prim-5 stages). During this time period, transcript levels of vegfa, vegfc, and vegfr1 were significantly decreased in embryos exposed to 5 mM MTBE.

Publication Title

Manipulation of the HIF-Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP050275
Macrophage Gene Expression Upon Infection with Anaplasma phagocytophilum in the Presence and Absence of the Tick Salivary Protein SL2
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Previously, we observed that a tick salivary protein named sialostatin L2 (SL2) mitigates caspase 1-mediated inflammation upon Anaplasma phagocytophilum infection. Here we are performing next-generation sequencing to determine the global effect of SL2 upon A. phagocytophilum infection of macrophages. Overall design: BMDMs were treated by 4 different conditions (including non-treated, treated by SL2, treated by Anaplasma, and by Anaplasma and SL2, each treatment was performed in triplicate) followed by the extraction of total RNA and deep sequencing by Illumina

Publication Title

The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP118468
The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (Doublecortin-like kinase 3) which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington''s disease. Recent data obtained in studies related to cancer suggest DCLK3 could have anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington''s disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington''s disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodeling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including TADA3, a core component of SAGA complex. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodeling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration. Examination of DCLK3 as neuroprotector against mutant huntingtin in vivo and in vitro models. Overall design: Examination of DCLK3 as neuroprotector against mutant huntingtin in vitro experiments.

Publication Title

The striatal kinase DCLK3 produces neuroprotection against mutant huntingtin.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE78513
NPM-ALK expression levels identify two distinct signatures in Anaplastic Large Cell Lymphoma of Childhood
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Anaplastic large-cell lymphoma (ALCL) makes up approximately 15% of paediatric non-Hodgkin's lymphomas of childhood. The vast majority of them is associated with the t(2;5)(p23;q35) translocation that results in the expression of a hybrid oncogenic tyrosine kinase, NPM-ALK. In order to investigate ALCL biological characteristics we used transcriptional profiling approach. Genome-wide gene expression profiling, performed on 23 paediatric ALCL and 12 reactive lymph nodes specimens, showed two novel ALCL subgroups based on their NPM-ALK expression levels (named (ALK low and ALK high). Gene set enrichment analysis revealed, in ALK low samples, a positive enrichment of genes involved in the Interleukin signaling pathway, whereas we found increased expression of genes related to cell cycle progression and division in ALK high tumour samples, such as Aurora Kinase A (AURKA) and B (AURKB). Growth inhibition was observed upon administration of AURKA and AURKB inhibitors Alisertib and Barasertib and it was associated with perturbation of the cell cycle and induction of apoptosis. In conclusion we identified two novel ALCL subgroups, which display unique biological characteristics suggesting sensitivity to distinct targeted therapies.

Publication Title

NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12253
Mechanism of biphasic effects of alcohol on gene expression
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

the molecular mechanisms for the biphasic effect of alcohol are not fully understood. The goal of the study is to identify genes that are differentially expressed following alcohol exposure of 50mM and 100mM ethanol for 24 hours.

Publication Title

Ethanol upregulates glucocorticoid-induced leucine zipper expression and modulates cellular inflammatory responses in lung epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79110
Zinc finger protein 521 overexpression is a feature of MLL-rearranged acute myeloid leukemia and contributes to the maintenance of myeloid differentiation block
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ZNF521 is a multiple zinc finger transcription factor previously identified because abundantly and selectively expressed in normal CD34+ hematopoietic stem and progenitor cells. From microarray datasets, aberrant expression of ZNF521 has been reported in both pediatric and adult acute myeloid leukemia (AML) patients with MLL gene rearrangements. However, a proper validation of microarray data is lacking, likewise ZNF521 contribution in MLL-rearranged AML is still uncertain. In this study, we show that ZNF521 is significantly upregulated in MLL translocated AML patients from a large pediatric cohort, regardless of the type of MLL translocations such as MLL-AF9, MLL-ENL, MLL-AF10 and MLL-AF6 fusion genes. Our in vitro functional studies demonstrate that ZNF521 play a critical role in the maintenance of the undifferentiated state of MLL-rearranged cells. Furthermore, analysis of the ZNF521 gene promoter region shows that ZNF521 is a direct downstream target of both MLL-AF9 and MLL-ENL fusion proteins. Gene expression profiling of MLL-AF9-rearranged THP-1 cells after depletion of ZNF521 reveals correlation with several expression signatures including stem cell-like and MLL fusion dependent programs. These data suggest that MLL fusion proteins activate ZNF521 expression to maintain the undifferentiated state and contribute to leukemogenesis.

Publication Title

ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58697
Expression data from 128 Desmoids
  • organism-icon Homo sapiens
  • sample-icon 123 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

One of the main problems in managing desmoids tumors is their locoregional aggressiveness and their high ability to recur after initial treatment. In our work, with the goal to identify molecular markers that can predict Progression-Free Survival, gene-expression screening was conducted on 128 available independent untreated primary desmoid tumors using cDNA microarray. By analyzing expression profiles, we have identified, for the first time, a gene expression signature that is able to predict Progression-Free Survival. This molecular signature identified two groups with clearly distinct Progression-Free Survival in the two sets of subjects. Patients in good prognostic group had achieved a progression-free 2-year survival rate of 86% while patients in poor prognostic group had a progression-free 2-year survival rate of 44%.

Publication Title

Gene Expression Profiling of Desmoid Tumors by cDNA Microarrays and Correlation with Progression-Free Survival.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE21050
Expression data from Complex genetics sarcomas (cohort 1 and 2)
  • organism-icon Homo sapiens
  • sample-icon 303 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

For this study, we selected, from the French Sarcoma Group (FSG) database, soft tissue sarcomas with no recurrent chromosomal translocations and for which a frozen tissue of the untreated primary tumor was available. Three hundred and ten sarcomas have been studied. They are split in two cohorts.

Publication Title

Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity.

Sample Metadata Fields

Specimen part, Disease, Time

View Samples
accession-icon SRP057793
RNA-seq performed on sarcomas to identify various alterations
  • organism-icon Homo sapiens
  • sample-icon 149 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

No description.

Publication Title

Genomic and transcriptomic comparison of post-radiation versus sporadic sarcomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP113755
Transcriptome characterization of radiation-induced sarcomas
  • organism-icon Homo sapiens
  • sample-icon 73 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

No description.

Publication Title

Genomic and transcriptomic comparison of post-radiation versus sporadic sarcomas.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact