refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 141 results
Sort by

Filters

Technology

Platform

accession-icon GSE8527
Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent pneumococci
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Infection of the human host by Streptococcus pneumoniae begins with colonization of the nasopharynx, which is mediated by adherence of bacteria to respiratory epithelium. Several studies have indicated an important role for the pneumococcal capsule in this process. Here, we used microarrays to characterize the in vitro transcriptional response of human nasopharyngeal epithelial Detroit 562 cells to adherence of serotype 2-encapsulated strain D39, serotype 19F-encapsulated strain G54, serotype 4-encapsulated strain TIGR4, and their nonencapsulated derivatives (cps). In total, 322 genes were found to be upregulated in response to adherent pneumococci. Twenty-two genes were commonly induced, including those encoding several cytokines (e.g., IL-1, IL-6), chemokines (e.g., IL-8, CXCL1/2), and transcriptional regulators (e.g., FOS), consistent with an innate immune response mediated by Toll-like receptor signaling. Interestingly, 85% of genes was induced specifically by one or more encapsulated strains, suggestive of a capsule-dependent response. Importantly, purified capsular polysaccharides alone had no effect. Over a third of these loci encoded products predicted to be involved in transcriptional regulation and signal transduction, in particular MAPK signaling pathways. Real-time PCR of a subset of ten genes confirmed microarray data and showed a time-dependent upregulation of especially innate immunity genes. Downregulation of epithelial genes was most pronounced upon adherent D39cps, as 68% of the 161 genes identified was only repressed using this nonencapsulated strain. In conclusion, we identified a subset of host genes specifically induced by encapsulated strains during in vitro adherence, and have demonstrated the complexity of interactions occurring during the initial stages of pneumococcal infection.

Publication Title

Analysis of the in vitro transcriptional response of human pharyngeal epithelial cells to adherent Streptococcus pneumoniae: evidence for a distinct response to encapsulated strains.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29565
Expression data from chicken embryonic fibroblasts infected with Toxoplasma gondii
  • organism-icon Gallus gallus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE29563
Host responses in chicken embryonic fibroblasts infected with different strains of Toxoplasma gondii [F1 progeny]
  • organism-icon Gallus gallus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE29562
Strain-dependent host responses in chicken embryonic fibroblasts infected with Toxoplasma gondii [ME49, CEP, and Mock]
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE55298
Toxoplasma RH and Mock Infection of macrophages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Infection of RAW264.7 cells with RHku80 parasites or mock-infection for 24 hours

Publication Title

Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29564
ROP16-dependent host transcriptional responses in chicken embryonic fibroblasts infected with T. gondii [RH, ROP16-KO]
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE93987
Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder
  • organism-icon Homo sapiens
  • sample-icon 207 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3, and to a lesser extent in layer 5.

Publication Title

Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-958
Transcription profiling of human wild type and deltaTOR-containing hepatocyte-like cells to compare total RNA and polysome-bound RNA populations upon hepatocytic differentiation
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of Total RNA and Polysome-bound RNA populations in deltaTOR containing cells and control cells upon hepatocyitc differentiation.

Publication Title

Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon E-ATMX-4
Transcription profiling of wild type and JMT over-expressing Arabidopsis plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

Effect of JMT overexpression in global gene expression

Publication Title

Complement analysis of xeroderma pigmentosum variants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3842
LD/DD time course of y w; tim01, cn bw, and y w Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Control of daily transcript oscillations in Drosophila by light and the circadian clock.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact