refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 391 results
Sort by

Filters

Technology

Platform

accession-icon GSE55616
ARRB1 regulates prostate cancer cell metabolism
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55614
Genome-wide Mapping of ARRB1 Reveals its Role as a HIF1A Transcriptional Co-regulator and Regulator of Cellular Metabolism [expression array]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Beta-arrestin 1 (ARRB1) has been implicated in transcriptional regulation as part of protein complexes bound to chromatin. Here we investigate its effect on transcription and its potential impact on prostate cancer. We report the first genome-wide mapping of chromatin binding for ARRB1 and combine it with expression array data to define its transcriptome. We identify Hypoxia Inducible Factor 1A (HIF1A) as a nuclear binding partner that recruits ARRB1 to promoter regions of HIF1A targets. We show that ARRB1 modulates HIF1A-dependent transcription and promotes a shift in cellular metabolism from oxidative phosphorylation to aerobic glycolysis. In addition, we show that ARRB1 plays an important role in neoplastic transformation, cell growth and resistance to hypoxic stress. This is the first example of an endocytic adaptor protein regulating metabolic pathways and implicates ARRB1 as a tumour promoter.

Publication Title

Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP068907
mRNA-seq of nuclear RNA extracted from T4 and T5 neurons of D. melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T4 and T5 neurons are components of the neuronal circuit for motion vision in flies. To identify genes involved in neuronal computation of T4 and T5 neurons, we perfomed transcriptome analysis. Nuclei of T4 and T5 neurons were immunoprecipitated, total RNA was harvested and used for mRNA-seq with Illumina technology. In two biological replicates, we mapped 154 and 119 million reads to D. melanogaster genome. mRNA-seq provided information about expression levels of 17,468 annotated transcripts in the T4 and T5 neurons. Overall design: Cell type – specific transcriptome analysis of the RNA isolated from immunoprecipitated nuclei, performed in two biological replicates

Publication Title

RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE18113
Expression data from Human MicroVascular Endothelial Cells (HMVECS)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The activation of endothelium by tumor cells is one of the main steps by tumor metastasis. The role of the blood components (platelets and leukocytes) in this process remain unclear.

Publication Title

Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9000
Effect of HDAC inhibitors on expression of androgen induced genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Elevated levels of androgen receptor (AR) in prostate cancer confer resistance to current antiandrogens and play a causal role in disease progression due to persistent target gene activation. Through pharmacologic and genetic approaches, we show that half of all direct AR target genes, including TMPRSS2, the primary driver of ETS fusion transcripts in 70 percent of human prostate cancers, require histone deacetylase (HDAC) activity for transcriptional activation by AR. Surprisingly, the HDAC3-NCoR complex, which typically functions to repress gene expression by nuclear receptors, is required for AR target gene activation. Prostate cancer cells treated with HDAC inhibitors have reduced AR protein levels, but we show that the mechanism of blockade of AR activity is through failure to assemble a coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in hormone refractory prostate cancer models and therefore merit clinical investigation in this setting. HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.

Publication Title

Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12438
Effect of individual HDAC knockdown on expression of androgen induced genes
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Elevated levels of androgen receptor (AR) in prostate cancer confer resistance to current antiandrogens and play a causal role in disease progression due to persistent target gene activation. Through pharmacologic and genetic approaches, we show that half of all direct AR target genes, including TMPRSS2, the primary driver of ETS fusion transcripts in 70 percent of human prostate cancers, require histone deacetylase (HDAC) activity for transcriptional activation by AR. Surprisingly, the HDAC3-NCoR complex, which typically functions to repress gene expression by nuclear receptors, is required for AR target gene activation. Prostate cancer cells treated with HDAC inhibitors have reduced AR protein levels, but we show that the mechanism of blockade of AR activity is through failure to assemble a coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in hormone refractory prostate cancer models and therefore merit clinical investigation in this setting. HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.

Publication Title

Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP058071
ABCC5 functions as a transporter of glutamate conjugates and analogs
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The ubiquitous efflux transporter ATP-binding cassette sub-family C member 5 (ABCC5) is present at high levels in the blood-brain barrier, neurons and glia, but its in vivo substrates and function are not known. Untargeted metabolomic screens revealed that Abcc5-/- mice accumulate endogenous glutamate conjugates and analogs in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate (NAAG), for example, was over 2-fold higher in Abcc5-/- brain. In line with ABCC5-mediated transport, the metabolites that accumulated in Abcc5-/- tissues were depleted in cultured cells that overexpressed human ABCC5. Using membrane vesicles, we show that ABCC5 not only transports the metabolites detected in our screen, but also a wide range of peptides containing a C-terminal glutamate. Glutamate conjugates are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. We found that ABCC5 also transports exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid and N-methyl-D-aspartate (NMDA) and the therapeutic glutamate analog ZJ43. Taken together, we have identified ABCC5 as a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins and drugs. Overall design: A set of 5 wildtype brains was compared to a set of 5 Abcc5-knockout mouse brains

Publication Title

ATP-binding Cassette Subfamily C Member 5 (ABCC5) Functions as an Efflux Transporter of Glutamate Conjugates and Analogs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108025
Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human respiratory syncytial virus (hRSV) is a major cause of morbidity and mortality in the pediatric, elderly, and immune compromised populations. A gap in our understanding of hRSVdisease pathology is the interplay between virally encoded immune antagonists and host components that limit hRSV replication. hRSV encodes for non-structural (NS) proteins that are important immune antagonists; however, the role of these proteins in viral pathogenesis is incompletely understood. Here we report the crystal structure of hRSV NS1 protein, which suggests that NS1 is a structural paralog of hRSV matrix (M) protein. Comparative analysis of the shared structural fold with M revealed regions unique to NS1. Studies on NS1 WT or mutant alone or in recombinant RSVs demonstrate that structural regions unique to NS1 contribute to modulation of host responses, including inhibition of type I IFN responses, suppression of dendritic cell maturation, and promotion of inflammatory responses. Transcriptional profiles of A549 cells infected with recombinant RSVs show significant differences in multiple host pathways, suggesting that NS1 may have a greater role in regulating host responses than previously appreciated. These results provide a framework to target NS1 for therapeutic development to limit hRSV associated morbidity and mortality. Overall design: 12 samples where analysed. A549 cell line was infected with mock, hRSV or mutated hRSV virus. Samples are: control mock-infected (2 replicas), hRSV wild-type NS1 infected (3 replicas), hRSV NS1 1-118 infected (3 replicas), hRSV NS1 L132A/L133A infected (2 replicas) and hRSV NS1 Y125A infected (2 replicas). Libraries was prepared for 96 h.p.i.

Publication Title

Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE43685
Early growth response protein-1 coordinates lipotoxicity-associated placental inflammation: Role in Maternal Obesity
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Maternal obesity during pregnancy leads to a pro-inflammatory milieu in the placenta. We conducted a global transcriptomic profiling in BeWo cells following palmitic acid (PA, 500 uM) and/or TNF-alpha (10 ng/ml) treatment for 24 h. Microarray analysis revealed that placental cytotrophoblasts increased expression of genes related to inflammation, stress response and immediate-early factors in response to plamitic acid, TNF-alpha or a combination of both. Our results suggest that fatty acids and inflammatory cytokines induce inflammation in placental cells via activation of JNK-Egr-1 signaling.

Publication Title

Early growth response protein-1 mediates lipotoxicity-associated placental inflammation: role in maternal obesity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP042045
Transposon expression kinetics in Dnmt3L-/- developing testes [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We examined the kinetics of production of mRNAs and small RNAs derived from transposable elements during mouse spermatogenesis, in whole gonads of wildtype and DNA methylation-deficient males (Dnmt3L and Miwi2 mutants). We found that in absence of DNA methylation, transposon reactivation is not constitutive but rather occurs in a class- and development-specific manner : both the intensity of reactivation and the number of reactivated transposon classes increased as germ cells progress in meiosis. Moreover, we observed that transposon silencing before meiosis is not due to increased cleavage by the piRNA machinery. In contrast, the burst of transposon transcripts occurring at meiosis in the absence of DNA methylation serve as substrates for increased piRNA production Overall design: Six whole testis samples were analyzed, corresponding to three time points (16.5dpc, 10dpp and 20dpp) each for Dnamt3L-/- animals and control littermates. For 16.5dpc, testes from 7/8 mice were pooled per genotype. For the other stages, three mice were pooled per genotype.

Publication Title

DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact