refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 462 results
Sort by

Filters

Technology

Platform

accession-icon GSE92466
Inherited human IRAK-1 deficiency selectively abolishes TLR signaling in fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We describe here a male infant with a 100 kb de novo Xq28 deletion encompassing parts of the TMEM187 and MECP2 protein-coding genes and the IRAK1 protein-coding gene, as well as the MIR3202-1, MIR3202-2, and MIR718 RNA-coding genes. We analyzed the impact of human IRAK-1 deficiency on a genome-wide gene expression in human fibroblasts in response to TLR2/6, TLR4 agonists as well as to IL-1 and TNF-, using primary fibroblasts from healthy controls and IRAK-4-, MyD88- and MECP2-deficient patients for comparison.

Publication Title

Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE137110
Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-?
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment, Time

View Samples
accession-icon GSE92769
Genome-wide mapping of expression in WT and p63 mutant mouse mandibular prominences at E10-E13
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Despite even large phenotypic differences among vertebrate groups, dentitions and jaws fit and function together, yet the genetic processes that orchestrate cranial and dental morphogenesis remain poorly understood. In the p63-/- mouse mutant, teeth but not jaws fail to form. This edentate mouse is a model with which to tease out genes important for odontogenesis but not jaw morphogenesis, and which may thus allow dentitions to change during development and evolution without necessarily affecting the jaw skeleton. With the working hypothesis that tooth and jaw development are autonomously controlled by discreet gene regulatory networks, we probed for genes crucial for tooth development only. Using gene expression microarray assays validated by quantitative reverse-transcription PCR, we contrasted expression in mandibular prominences at embryonic days (E) 10-13 among mice with normal lower jaw development and either normal (p63+/-, p63+/+) or arrested (p63-/-) tooth development. We predicted that expression of a suite of genes specific to odontogenesis would differ in the edentate mice. The p63-/- mice showed significantly different expression (fold change 1.5, -1.5; p0.05) of several genes, some of which are already reported to help regulate odontogenesis (e.g., p63, Osr2, Cldn3/4) and/or to be targets of p63 (e.g., Jag1/2, Fgfr2), others of which have no previously reported roles in odontogenesis or the p63 pathway (e.g, Fermt1, Cbln1, Pltp, Cxcl14, Krt8, and additional keratin and claudin family members). As expected, from E10-E13 few genes known to regulate mandible morphogenesis differed in expression between mouse strains. Thus this study links for the first time several genes to odontogenesis and/or the p63 signaling network. We propose that these genes act in a novel odontogenic network that is exclusive of lower jaw morphogenesis, and posit that this network evolved in oral, not pharyngeal, teeth.

Publication Title

Detangling the evolutionary developmental integration of dentate jaws: evidence that a p63 gene network regulates odontogenesis exclusive of mandible morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1155
NINDS Rat Epilepsy Diet
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

The ketogenic diet (KD) is an anticonvulsant treatment that has been used to manage medically-intractable epilepsies. The KD requires 10-12 days to become maximally effective, suggesting that changes in gene expression are involved in its anticonvulsant action. Using the Affymetrix rat arrays (RAE230A), 6 control samples and 5 KD samples were run.

Publication Title

Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7491
Expression data from rat lung alveolar development
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Lung alveolarization is a complex process that involves interactions between several cell types and leads to considerable increase in gas-exchange surface area. The step designated secondary septation includes elastogenesis from interstitial fibroblasts.

Publication Title

Gene expression profiling in lung fibroblasts reveals new players in alveolarization.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE102067
An RNAi screen reveals an essential role for HIPK4 in human skin epithelial differentiation from iPSCs
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Molecular mechanisms that are responsible for the development of human skin epithelial cells are not completely understood so far. As a consequence, the efficiency to establish a pure skin epithelial cell population from human induced pluripotent stem cells (hiPSC) remains poor. Using an approach including RNA interference and high-throughput imaging of early epithelial cells, we could identify candidate kinases which are involved in skin epithelial differentiation. Among them, we found HIPK4 to be an important inhibitor of this process. Indeed, its silencing increased the amount of generated skin epithelial precursors, increased the amount of generated keratinocytes and improved growth and differentiation of organotypic cultures, allowing for the formation of a denser basal layer and stratification with the expression of several keratins. Our data bring substantial input in the regulation of human skin epithelial differentiation and for improving differentiation protocols from pluripotent stem cells.

Publication Title

An RNAi Screen Reveals an Essential Role for HIPK4 in Human Skin Epithelial Differentiation from iPSCs.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP186927
AmpliSeq transcriptome profiling of human adipose tissue progenitor cell types
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location. Overall design: Transcriptomic profiling of 3 different progenitor cell types in subcutaneous and visceral adipose tissues derived from 5 obese patients (3X2X5=30 samples).

Publication Title

Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP055084
Toxoplasma proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Two secreted Toxoplasma proteins (GRA17 and GRA23) mediate the passage of small molecules between the host cytoplasm and the parasite-containing vacuole. This provides the first molecular explanation to how intracellular, vacuole-residing parasites in the phylum Apicomplexa, like Plasmodium, gain access to host nutrients. Methods: Mouse-derived Bone Marrow Macrophages were infected with Toxoplasma tachyzoites of either WT, dGRA17, dGRA23, or dGRA17rescue genetic background for 4 hours. Results: GRA23 gene expression levels are elevated in the dGRA17 strain but not vice versa. Conclusions: GRA17 and GRA23 are synergistically required for permeability of small molecules into the Toxoplasma parasitophorous vacuole. Overall design: Toxoplasma and Mouse gene expression profiles from BMDMs infected with either WT (control), dGRA17, gGRA23, or dGRA17rescue (control) tachyzoites were obtained by RNA-Seq on an Illumina HiSeq2000 instruments at 4 hours post-infection.

Publication Title

The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16458
A simple method to integrate different versions of Affymetrix microarrays using duplicate samples
  • organism-icon Rattus norvegicus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

The size and scope of microarray experiments continue to increase. However, datasets generated on different platforms or at different centres contain biases. Improved techniques are needed to remove platform- and batch-specific biases. One experimental control is the replicate hybridization of a subset of samples at each site or on each platform to learn the relationship between the two platforms. To date, no algorithm exists to specifically use this type of control. LTR is a linear-modelling-based algorithm that learns the relationship between different microarray batches from replicate hybridizations. LTR was tested on a new benchmark dataset of 20 samples hybridized to different Affymetrix microarray platforms. Before LTR, the two platforms were significantly different; application of LTR removed this bias. LTR was tested with six separate data pre-processing algorithms, and its effectiveness was independent of the pre-processing algorithm. Sample-size experiments indicate that just three replicate hybridizations can significantly reduce bias. An R library implementing LTR is available.

Publication Title

LTR: Linear Cross-Platform Integration of Microarray Data.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73599
Celiac disease T cell clone response to CD3/CD28 stimulation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify the CD4+ T cell cytokines responsible for the proliferation of the Lin-IEL lines CD4+ T cell clone L10, which recognises DQ2-glia-1, one of the immunodominant T cell epitopes in celiac disease, was stimulated for 3 hours in IMDM with plate-bound CD3/CD28-specific (2.5 g/ml each) or control antibodies coated onto 6-well non-tissue culture treated plates. Three independent biological replicates were performed, each time including 6 million Ficoll-purified live cells per condition. RNA was purified from these cells using the RNAeasy mini kit (Qiagen, Venlo, the Netherlands). cDNA was amplified using the Applause WT-Amp system (NuGEN technologies, Bemmel, the Netherlands) and biotin-labelled with the Encore Biotin Module (NuGEN). Human Gene 1.0 ST arrays (Affymetrix, High Wycombe, UK) were employed to quantify global gene expression.

Publication Title

CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact