refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon SRP045154
Replicative senescence is associated with nuclear reorganization and DNA methylation at specific transcription factor binding sites (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Primary cells enter replicative senescence after a limited number of cell divisions. This process is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown and may arise through drift in DNAm or through regulated, senescence dependent modifications at specific sites in the genome. In this study, we analyzed the reorganization of nuclear architecture and DNA methylation during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). [RNA-seq] Overall design: RNA was isolated from 1,000,000 cells of three MSC donors (59, 64, and 73 years old) at passage 4 and passage 13 using the miRNeasy Mini Kit (Qiagen). Gene expression profiles were analzyed by deep sequencing with IlluminaHiSeq 2000 technology with a read length of 50 bases at EMBL gene core facility (Heidelberg, Germany).

Publication Title

Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12945
Expression data from colorectal cancers
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Wiskott-Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis.

Publication Title

An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE33643
Comparison of gene expression alterations induced by distinct PI3K inhibitors
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal is the characterization of the off-target activity of BKM120 observed in A2058 human melanoma cell line at IC90 concentration (3.606 M) but not at lower concentrations. Controls are BEZ235, GDC0941, showing no off-target activity.

Publication Title

Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP165279
Early response to loss of Argonaute proteins in embryonic stem cells activates the Tgf-ß/Smad Transcriptional Network [mRNA-Seq: DicerDgcr8_KOs]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Argonaute (Ago) proteins, which act in post-transcriptional gene regulation directed by small RNAs, are vital for normal stem cell biology. Here we report the genomic characterization of stable Ago-deficient mouse embryonic stem cells (mESC) and determine the direct, primary and system level response to loss of Ago-mediated regulation. We find mESCs lacking all four Ago proteins are viable, do not repress microRNA (miRNA)-targeted cellular RNAs, and show distinctive gene network signatures. Profiling of RNA expression and epigenetic activity in an Ago mutant genetic series indicates that early responses to Ago loss are driven by transcriptional regulatory networks, in particular the Tgf-ß/Smad transcriptional network. This finding is confirmed using a time course analysis of Ago depletion and Ago rescue experiments. Detailed analysis places Tgf-ß/Smad activation upstream of cell cycle regulator activation, such as Cdkn1a, and repression of the c-Myc transcriptional network. The Tgf-ß/Smad pathway is directly controlled by multiple low-affinity miRNA interactions with Tgf-ß/Activin receptor mRNAs and receptor-mediated activation is required for Tgf-ß/Smad target induction with Ago loss. Our characterization reveals the interplay of post-transcriptional regulatory pathways with transcriptional networks in maintaining cell state and likely coordinating cell state transitions. Overall design: mRNA seq from stable genetic Dicer and Dgcr8 mutant mouse embryonic stem cells.

Publication Title

Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE107392
The molecular basis of T-PLL is an actionable perturbation of TCL1/ATM- and epigenetically instructed damage responses [murine gene expression array]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. To address its incomplete molecular concept, we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identified novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor / cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM towards a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.

Publication Title

Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049237
MiR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction [III]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Overall design: Two replicates of three cDNA libraries were submitted to deep sequencing: a sample from RNA-7-transfected cells; a sample from pre-miR-106a transfected cells; and a control sample.

Publication Title

miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049238
MiR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction [IV]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Identifying the interaction partners of non-coding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA-cross-linking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-cross-linking and Argonaute 2-immunopurification followed by streptavidin affinity-purification of probe-linked RNAs provided selectivity in the capture of targets, identified by deep-sequencing. MiR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. MiR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long-non-coding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a sponge for these miRNAs. Overall design: Two replicates of two cDNA libraries were submitted to deep sequencing: a sample from siH19-transfected cells and a control sample.

Publication Title

miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072245
Hypothalamic transcriptome of male mice on high fat diet, from 99 strains
  • organism-icon Mus musculus
  • sample-icon 282 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Previous studies had shown that integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL "hotspots" associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provides a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. Overall design: 282 samples, 3 biological replicates per strain

Publication Title

Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes.

Sample Metadata Fields

Sex, Cell line, Subject

View Samples
accession-icon SRP045499
Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans [RNA-Seq]
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the C. elegans miR-58 miRNA family, comprised primarily of four highly abundant members: miR-58.1, miR-80, miR-81 and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. Overall design: RNA was extracted from different miR-58 family mutants (mir-58.1, mir-80; mir-58.1 and mir-80; mir-58.1; mir-81-82) and wild-type Bristol C. elegans strain at late L4 stage and submitted to transcriptome sequencing with Illumina HiSeq2000. The goal was to compare miR-58 target RNA expression and system-wide perturbations across various samples.

Publication Title

Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE107333
Endogenous retrovirus-associated genes in a hypoxia-mimetic cobalt chloride neuroblastoma model
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

By using high-density DNA microarrays, we analyzed the gene-expression profile of SHSY5Y neuroblastoma cells after treatment with cobalt chloride

Publication Title

Investigation of Endogenous Retrovirus Sequences in the Neighborhood of Genes Up-regulated in a Neuroblastoma Model after Treatment with Hypoxia-Mimetic Cobalt Chloride.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact